



## **Uni-directional 4.8V High Capacitance ESD Protector**

#### **Description**

The PESDHC2FD4V8UF ESD protector is designed to replace multilayer varistors (MLVs) in portable applications such as cell phones, notebook computers, and PDA's. They feature large cross-sectional area junctions for conducting high transient currents, offer desirable electrical characteristics for board level protection, such as fast response time, lower operating voltage, lower clamping voltage and no device degradation when compared to MLVs. The PESDHC2FD4V8UF protects sensitive semiconductor components from damage or upset due to electrostatic discharge (ESD) and other voltage induced transient events. The PESDHC2FD4V8UF is available in a DFN1006-2L package with working voltages of 4.8 volt. It gives designer the flexibility to protect one unidirectional line in applications where arrays are not practical. Additionally, it may be "sprinkled" around the board in applications where board space is at a premium.



DFN1006-2L(Bottom View)

5H

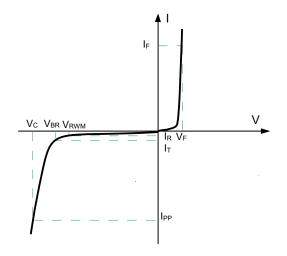
Marking (Top View)

#### **Feature**

- $\gt$  500W Peak pulse power per line ( $t_P = 8/20\mu s$ )
- DFN1006-2L package
- Replacement for MLV(0402)
- Unidirectional configurations
- Response time is typically < 1 ns</p>
- Protect one I/O or power line
- Low clamping Voltage
- RoHS compliant
- Transient protection for data lines to IEC 61000-4-2(ESD) ±30kV(air), ±30kV(contact); IEC 61000-4-4 (EFT) 40A (5/50ns)

## **Applications**

- Cell phone handsets and accessories
- Personal digital assistants (PDA's)
- Notebooks, desktops, and servers
- Portable instrumentation
- Cordless phones
- Digital cameras
- Peripherals
- MP3 players


# Pin 1 Pin 2 Circuit Diagram

### **Mechanical Characteristics**

- Mounting position: Any
- Qualified max reflow temperature:260°C
- Device meets MSL 1 requirements
- DFN1006-2L without plating

## **Electronics Parameter**

| Symbol           | Parameter                                  |  |  |
|------------------|--------------------------------------------|--|--|
| V <sub>RWM</sub> | Peak Reverse Working Voltage               |  |  |
| I <sub>R</sub>   | Reverse Leakage Current @ V <sub>RWM</sub> |  |  |
| $V_{BR}$         | Breakdown Voltage @ I <sub>T</sub>         |  |  |
| lτ               | Test Current                               |  |  |
| IPP              | Maximum Reverse Peak Pulse Current         |  |  |
| Vc               | Clamping Voltage @ I <sub>PP</sub>         |  |  |
| P <sub>PP</sub>  | Peak Pulse Power                           |  |  |
| CJ               | Junction Capacitance                       |  |  |
| l <sub>F</sub>   | Forward Current                            |  |  |
| V <sub>F</sub>   | Forward Voltage @ I <sub>F</sub>           |  |  |



# Electrical characteristics per line@25℃( unless otherwise specified)

| Parameter                       | Symbol           | Conditions                                   | Min. | Тур. | Max. | Units |
|---------------------------------|------------------|----------------------------------------------|------|------|------|-------|
| Peak Reverse Working Voltage    | V <sub>RWM</sub> |                                              |      |      | 4.8  | V     |
| Breakdown Voltage               | V <sub>BR</sub>  | I <sub>T</sub> =1mA                          | 5.0  | 5.8  | 6.5  | V     |
| Reverse Leakage Current         | I <sub>R</sub>   | V <sub>RWM</sub> =4.8V                       |      |      | 100  | nA    |
| Forward Voltage                 | VF               | I <sub>F</sub> =10mA                         |      |      | 1.2  | V     |
| Clamping Voltage <sup>(1)</sup> | Vc               | TLP=16A, t <sub>P</sub> = 100ns              |      | 6.5  |      | ٧     |
| Clamping Voltage <sup>(2)</sup> | Vc               | I <sub>PP</sub> =20A, t <sub>P</sub> =8/20μs |      | 7.0  | 8.0  | V     |
|                                 |                  | I <sub>PP</sub> =60A, t <sub>P</sub> =8/20μs |      | 9.0  | 11   | V     |
| Junction Capacitance            | СJ               | V <sub>R</sub> =0V, f = 1MHz                 |      | 160  |      | pF    |

Notes: 1) TLP parameter:  $Z0=50\Omega$ , tp=100ns, tr=2ns, averaging window from 60ns to 80ns.

# Absolute maximum rating@25℃

| Rating                                       | Symbol                         | Value      | Units |
|----------------------------------------------|--------------------------------|------------|-------|
| Peak Pulse Power (t <sub>P</sub> = 8/20μs)   | P <sub>pp</sub>                | 500        | W     |
| Peak Pulse Current (t <sub>P</sub> = 8/20μs) | I <sub>PP</sub>                | 60         | А     |
| Operating Temperature                        | TJ                             | -55 to 150 | °C    |
| Storage Temperature                          | T <sub>STG</sub>               | -55 to 150 | °C    |
| ESD Protection-Contact Discharge             | Discharge V <sub>ESD</sub> ±30 |            | kV    |
| ESD Protection-Air Discharge                 | V <sub>ESD</sub>               | ±30        | kV    |

<sup>2)</sup> Non-repetitive current pulse, according to IEC61000-4-5.

## **Typical Characteristics**



Fig 1.Pulse Waveform(8/20µs)

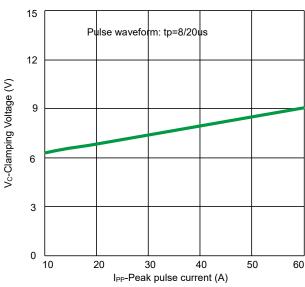



Fig 3. Clamping voltage vs. Peak pulse current

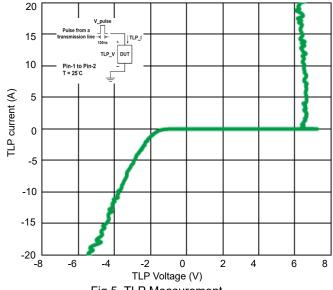



Fig 5. TLP Measurement

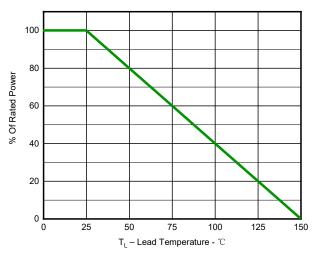



Fig 2.Power Derating Curve

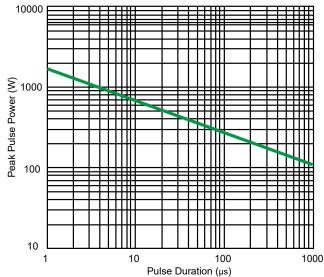



Fig 4. Non-Repetitive Peak Pulse Power vs. Pulse time

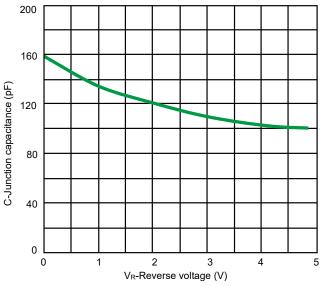
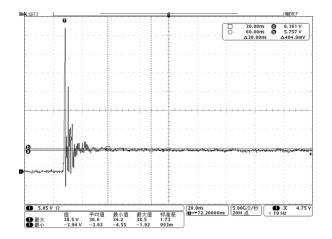




Fig 6. Capacitance vs. Reveres voltage



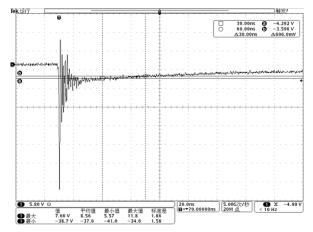
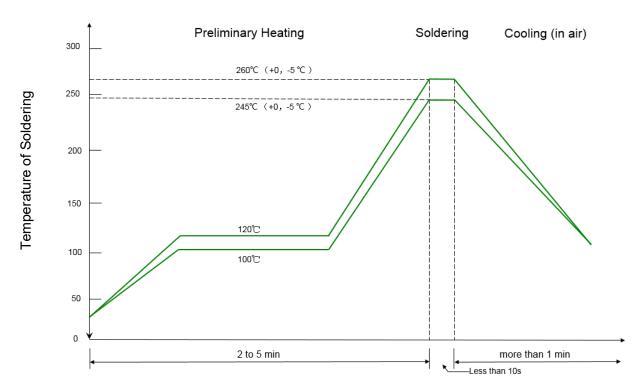
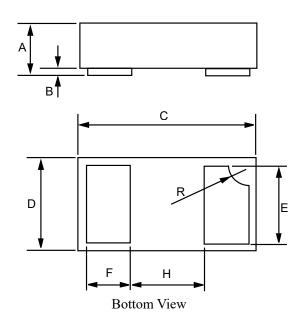
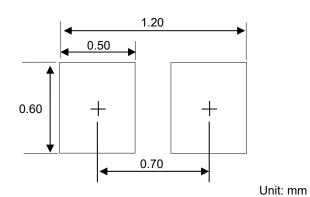




Fig 7. ESD clamping voltage (IEC61000-4-2 +8kV contact)


Fig 8. ESD clamping voltage (IEC61000-4-2-8kV contact)

## **Solder Reflow Recommendation**

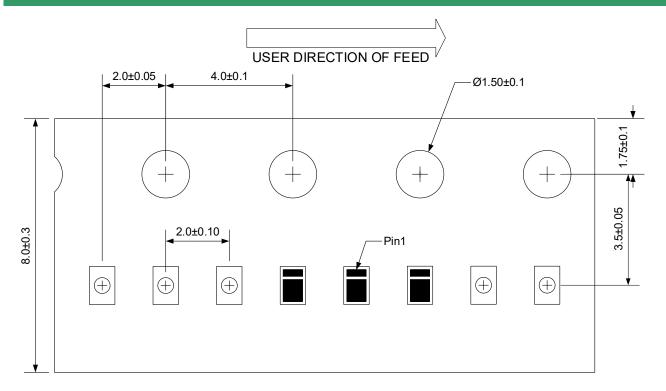



Remark: Pb free for 260°C; Pb for 245°C

# Product dimension (DFN1006-2L)



| Dim | Inches    |       | Millimeters |       |  |
|-----|-----------|-------|-------------|-------|--|
|     | MIN       | MAX   | MIN         | MAX   |  |
| Α   | 0.013     | 0.020 | 0.34        | 0.498 |  |
| В   | 0.000     | 0.002 | 0.00        | 0.05  |  |
| С   | 0.037     | 0.043 | 0.95        | 1.080 |  |
| D   | 0.022     | 0.027 | 0.55        | 0.68  |  |
| Е   | 0.016     | 0.024 | 0.40        | 0.60  |  |
| F   | 0.008     | 0.012 | 0.20        | 0.30  |  |
| Н   | 0.015Typ. |       | 0.40Тур.    |       |  |
| R   | 0.001     | 0.005 | 0.05        | 0.15  |  |




Suggested PCB Layout

# Ordering information

| Device         | Package    | Reel | MPQ                 |
|----------------|------------|------|---------------------|
| PESDHC2FD4V8UF | DFN1006-2L | 7"   | 10000 / Tape & Reel |

# Load with information



Unit:mm

#### **IMPORTANT NOTICE**

and Prisemi<sup>®</sup> are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi) ,Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or quarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.