

Description

PSC5415E is a switch-mode charging IC with maximum 1.75A current for lithium battery and lithium polymer battery. The PSC5415E has 5V, 700mA OTG function, and I2C function. The charging parameter such as charging current, full charging voltage and input current can be precisely configured by I2C function. The package type is WLCSP (1.901mmx1.501mm) with 20 pins.

The PSC5415E is designed with standard four-stage charging process: active, pre-charging, constant current, constant voltage and perfect protection mechanism for over current, over voltage, under voltage and over temperature. It is integrated with synchronous PWM control, high power MOSFET, and high voltage OVP circuits. The PSC5415E has high charging efficiency (94%), low internal resistance (45mΩ), and high DC withstand voltage (29V).

Feature

- Fully Integrated, High-Efficiency Charger for Single-Cell
 Li-lon and Li-Polymer Battery Packs
- ➤ Charge Voltage Accuracy: ±0.5% 25°C
- → ±5% Charge Current Regulation Accuracy
- 29V Absolute Maximum Input Voltage
- 5.75V Maximum Input Operating Voltage
- 1.75A Maximum Charge Rate
- 5V, 700mA Boost Mode for USB OTG for 3.0 to 4.5V Battery Input
- > 1.901 mm x 1.501mm 20-Pin WCSP Package

- Programmable through I²C Interface:
 - -Input Current
 - -Fast-Charge/Termination Current
 - -Charger Voltage
 - -Termination Enable
- Synchronous Buck PWM Controller with Wide Duty Cycle Range
- Small Footprint 1µH External Inductor
- Perfect protection mechanism:
 - -OVP, OCP, OTP

Application

- Cellular Phones, Smart Phones, PDAs
- Tablet, Portable Media Players
- Gaming Device, Digital Cameras

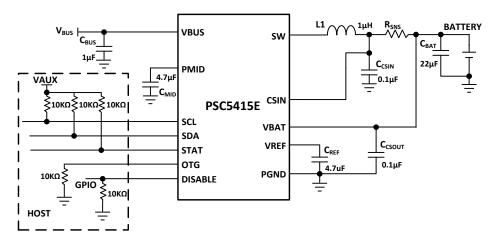


Figure 1: Typical Application

Rev.06.5 1 www.prisemi.com

Recommended External Components

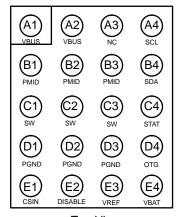
Key Components	Recommended specification
L1	Inductor, 1.0-2.2uH, +/-20%, Isat>3A
C _{MID}	Capacitor, 4.7μF, +/-10%, >6V
	Capacitor, 2.2µF, +/-10%, >10V ,0402
C_REF	or Capacitor, 4.7µF, +/-10%, >6V,0402
C _{BUS}	Capacitor, 1µF, +/-10%, >25V

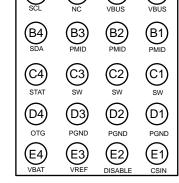
Block Diagram



Figure 2: IC and System Block Diagram

Marking Information




P15E:PSC5415E

XXXXX: Production Tracing Code

Pin Configuration

Top View

Bottom View

Figure 3: WLCSP-20 Pin Assignments

Pin Definitions

Pin#	Name	Description
A1,A2	VBUS	Charger Input Voltage and USB-OTG output voltage. Bypass with 1µF capacitor to PGND
А3	NC	NC.
A4	SCL	I ² C Interface Serial Clock. This pin should not be left floating.
B1-B3	PMID	Power Input Voltage. Power input to the charger regulator, bypass point for the input current sense, and high-voltage input switch. Bypass with a minimum of 4.7µF, 10V capacitor to PGND.
B4	SDA	I ² C Interface Serial Data. This pin should not be left floating.
C1-C3	SW	Switching Node. Connect to output inductor.
C4	STAT	Status. Open-drain output indicating charge status. The IC pulls this pin LOW when charge is in process.
D1-D3	PGND	Power Ground. Power return for gate drive and power transistors. The connection from this pin to the bottom of CMID should be as short as possible.
D4	OTG	On-The-Go. Enables boost regulator in conjunction with OTG_EN and OTG_PL bits
E1	CSIN	Current-Sense Input. Connect to the sense resistor in series with the battery. The IC uses this node to sense current into the battery. Bypass this pin with a 0.1µF capacitor to PGND.
E2	DISABLE	Charge Disable. If this pin is "1", charging is disabled. When LOW, charging is controlled by I2C registers.
E3	VREF	Bias voltage. Connect to a 4.7uF capacitor to PGND. The output voltage is PMID, which is limited to 6.5V. Any resistor loading to VREF is NOT recommended.
E4	VBAT	Battery Voltage. Connect to the positive (+) terminal of the battery pack. Bypass with a 0.1µF capacitor to PGND if the battery is connected through long leads.

Maximum Ratings and Thermal Characteristics(T_A=25[°]C unless otherwise noted)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

	Parameter	Symbol	Min.	Max.	Units
\/DLIC\/oltogo	Continuous	.,	-0.7	29.0	V
VBUS Voltage	Pulsed,100ms Maximum Non-Repetitive	V_{BUS}	-1.0	29.0	V
STAT Voltage		V _{STAT}	-0.3	7.0	V
PMID Voltage		Vı		7.0	>
SW,CSIN,VBAT,VREF, DIS	SW,CSIN,VBAT,VREF, DISABLE Voltage			7.0	V
Voltage on Other Pins	Vo	-0.3	6.5 ⁽¹⁾	V	
Maximum VBUS Slope abov	Maximum VBUS Slope above 5.5V when Boost or Charger are Active			4	V/µs
Electrostatic Discharge	Human Body Model per JESD22-A114	ESD	20	000	V
Protection Level	Charged Device Model per JESD22-C101	ESD	50	00	V
Junction Temperature	TJ	-40	+150	$^{\circ}$	
Storage Temperature	T _{STG}	-65	+150	$^{\circ}$	
Lead Soldering Temperature	Lead Soldering Temperature, 10 Seconds			+260	$^{\circ}$

Note(1): Lesser of 6.5V or $V_1 + 0.3V$.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Prisemi does not recommend exceeding them or designing to absolute maximum ratings.

Parameter	Symbol	Min.	Max.	Units	
Supply Voltage	V _{BUS}	4.5	5.75	V	
Maximum Battery Voltage when Boost enabled	$V_{BAT(MAX)}$		4.5	V	
Negative VBUS Slew Rate during VBUS Short Circuit,	T _A ≤60°C	- <mark>dV_{BUS}</mark>		4	V/µs
C _{MID} ≤ 22μF, see VBUS Short While Charging	T _A ≥60°C	- dt		2	ν/μ5
Ambient Temperature	T _A	-30	+85	$^{\circ}$	
Junction Temperature (see Thermal Protection section))	TJ	-30	+140	$^{\circ}$

Thermal Properties

Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with four-layer 2s2p boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature $T_{J(max)}$ at a given ambient temperature T_A .

Parameter	Symbol	Typical	Units
Junction-to-Ambient Thermal Resistance	θ_{JA}	85	°C/W
Junction-to-PCB Thermal Resistance	θ_{JB}	55	°C/W

Electrical characteristics per line@25°C (unless otherwise specified)

Unless otherwise specified: according to the circuit of Figure 1; recommended operating temperature range for T_J and T_A ; V_{BUS} =5.0V; HZ_MODE ; OPA_MODE =0; (Charge Mode); SCL, SDA, OTG=0 or 1.8V; and typical values are for T_J =25°C.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Power Supplies						
		V _{BUS} >V _{BUS(MIN)} , PWM Switching		1.5	10	mA
VBUS Current	I _{VBUS}	V _{BUS} >V _{BUS} (MIN); PWM Enabled, Not Switching (Battery OVP Condition); I_IN Setting=100mA		1.2	10	mA
VBAT to VBUS Leakage Current	I _{LKG}	0°C <t<sub>J<85°C V_{BAT}=4.2V,V_{BUS}=0V</t<sub>		0.2	1	μΑ
Battery Discharge Current in High-Impedance Mode	I _{BAT}	0℃ <t<sub>J<85℃ V_{BAT}=4.2V</t<sub>		5	10	μΑ
Charger Voltage Regulation			•			
Charge Voltage Range			4.1		4.40	V
Charge Voltage Assurage	V_{OREG}	T _J =25℃	-0.5%		+0.5%	
Charge Voltage Accuracy		T _J =0~125℃	-1%		1%	
Charging Current Regulation						
Output Charge Current Range	1	$V_{LOWV} < V_{BAT} < V_{OREG}$ $V_{BUS} > V_{SLP}, R_{SENSE} = 56m\Omega$	595		1750	mA
Charge Current Accuracy Across R _{SENSE}	l _{OCHRG}	TJ<85℃,VBAT=3.8V	92.5	100	107.5	%

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Logic Levels: DISABLE, SDA, SCL, C	TG					
High-Level Input Voltage	V _{IH}		1.2			V
Low-Level Input Voltage	V _{IL}				0.4	V
Input Bias Current	I _{IN}	Input Tied to GND or V _{IN}		0.01	1.00	μA
Charge Termination Detection						
Termination Current Range	I _(TERM)	V _{BAT} > V _{OREG} - V _{RCH} V _{BUS} > V _{SLP}	69		230	mA
Wake-up voltage						
Wake-up voltage Range	V _{wakeup}	Soft start current if vbat is lower	3.0	3.15	3.3	V
Wake-up current	I _{wakeup}	than V _{wakeup} (Rsense=56mΩ)		352		mA
Input Power Source Detection						
VBUS Input Voltage Rising	V _{IN(MIN)1}	To Initiate and Pass VBUS Validation		4.29	4.42	V
Minimum VBUS during Charge	V _{IN(MIN)2}	During Charging		4.1	4.15	V
VBUS Validation Time	t _{VBUS_VALID}			25		ms
Special Charger (V _{BUS})						
Special Charger Setpoint	V_{SP}	VSP[2:0]=100		4.52		V
Special Charger Setpoint Accuracy			-3		+3	%
Input Current Limit						
Input Current Limit Threshold	I _{INLIM}	I _{IN} Set to 500mA		480		mA

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Battery Recharge Threshold						
Recharge Threshold	V _{RCH}	Below V _(OREG)		140	200	mV
STAT Output						
STAT Output Low	V _{STAT(OL)}	I _{STAT} =10mA			0.4	V
STAT High Leakage Current	I _{STAT(OH)}	V _{STAT} =5V			1	μA
Sleep Comparator						
Sleep-Mode Entry Threshold, V _{BUS} – V _{BAT}	V_{SLP}	V _{BUS} Falling		0.25		V
Power Switches (see Figure 2)						
Q3 On Resistance (VBUS to PMID)		I _{IN(LIMIT)} =500mA		40	60	
Q1 On Resistance (PMID to SW)	R _{DS(ON)}			50	75	mΩ
Q2 On Resistance (SW to GND)				55	80	
Charger PWM Modulator						
Oscillator Frequency	f _{SW1}		1.25	1.5	1.65	MHz
Oscillator Frequency	f _{SW2}		1.65	2.0	2.3	IVITIZ
Maximum Duty Cycle	D _{MAX}				97	%
Minimum Duty Cycle	D _{MIN}			0		%
Boost Mode Operation (OPA_MODE:	=1, HZ_MOD	DE=0)				
Boost Output Voltage at VBUS	V _{BOOST}	3.3V <v<sub>BAT<4.5V, I_{LOAD} from 0 to 500mA</v<sub>	4.75	5.05	5.3	V
Boost Mode Quiescent Current	I _{BAT(BOOST}	PFM Mode, V _{BAT} =3.6V, I _{OUT} =0		1.6	10	mA
Minimum Battery Voltage for Boost Operation	UVLO _{BST}			3.0		V

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
VBUS Load Resistance						
VBUS to PGND Resistance	R _{VBUS}	Normal Operation		1500		ΚΩ
Protection and Timers						
VBUS Over-Voltage Shutdown	VDLIC	V _{BUS} Rising	5.75	5.9	6.05	V
Hysteresis	VBUS _{OVP}	V _{BUS} Falling		150		mV
Battery Short-Circuit Threshold	.,	V _{BAT} Rising	1.9	2.0	2.1	V
Hysteresis	V _{SHORT}	V _{BAT} Falling		0.1		V
Linear Charging Current	I _{SHORT}	V _{BAT} < V _{SHORT}	20	30	40	mA
Thermal Shutdown Threshold	т	T _J Rising		145		$^{\circ}$
Hysteresis	T _{SHUTDWN}	T _J Falling		10		C
12H timer	t _{12H}	Charger Enabled		12		hour
90-Minute Timer	T _{90MIN}	90-Minute Mode		90		min
32-Second Timer	T _{32s}	32-second Mode		32		Sec

I²C Timing Specifications

Guaranteed by design.

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
SCL Clock Frequency	f	Standard Mode			100	I/U-
	† _{SCL}	Fast Mode			400	- kHz
Bus-Free Time between STOP		Standard Mode		4.7		
and START Conditions	t _{BUF}	Fast Mode		1.3		μs

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
START or Repeated START	t _{HD;STA}	Standard Mode		4		μs
Hold Time	THD;STA	Fast Mode		600		ns
SCL LOW Period	t _{LOW}	Standard Mode		4.7		μs
SOL LOW F effou	LLOW	Fast Mode		1.3		μδ
SCL HIGH Period	t	Standard Mode		4		μs
SCETIIGITT GIIOG	t _{HIGH}	Fast Mode		600		ns
Panastad START Satur Time	taa=.	Standard Mode		4.7		μs
Repeated START Setup Time	t _{SU;STA}	Fast Mode		600		ns
Data Catus Time	t _{SU;DAT}	Standard Mode		250		- ns
Data Setup Time		Fast Mode		100		
Data Hold Time	t	Standard Mode	0		3.45	μs
Data Hold Time	t _{HD;DAT}	Fast Mode	0		900	ns
SCL Rise Time	4	Standard Mode	20+0.1C _B		1000	ns
SCL Rise Time	t _{RCL}	Fast Mode	20+0.1C _B		300	115
SCL Fall Time	4	Standard Mode	20+0).1C _B	300	ns
SCL Fall Time	t _{FCL}	Fast Mode	20+0).1C _B	300	115
SDA Rise Time Rise Time of SCL after a	t _{RDA}	Standard Mode	20+0).1C _B	1000	nc
Repeated START Condition and after ACK Bit	t _{RCL1}	Fast Mode	20+0.1C _B		300	ns

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
SDA Fall Time	4	Standard Mode	20+0.1C _B		300	20
	t _{FDA}	Fast Mode	20+0.1C _B		300	ns
Stop Condition Setup Time	t _{su;sto}	Standard Mode		4		μs
		Fast Mode		600		ns
Capacitive Load for SDA, SCL	Св				400	pF

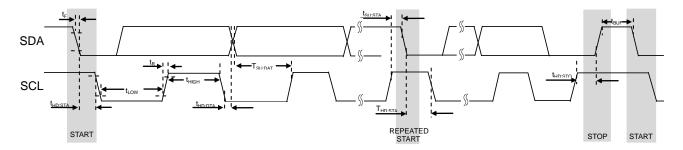


Figure 4. I²C Interface Timing for Fast and Slow Modes

Charge Mode Typical Characteristics

Unless otherwise specified, circuit of Figure 1, V_{OREG}=4.35V, V_{BUS}=5.0V, and T_A=25℃.

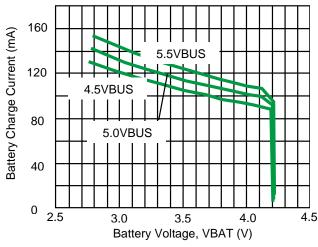


Figure 5. Battery Charge Current vs. V_{BUS} with I_{INLIM} =100mA

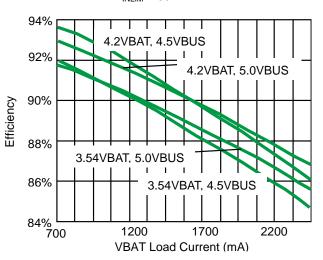


Figure 7. Charger Efficiency, No I_{INLIM}, I_{OCHARGE}=2253mA

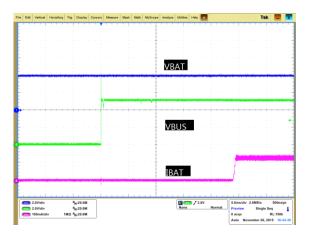


Figure 9. Auto-Charge Startup at V_{BUS} Plug-in, I_{INLIM} =100mA, V_{BAT} =3.9V

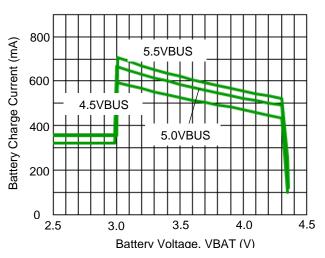


Figure 6. Battery Charge Current vs. V_{BUS} with I_{INLIM} =500mA

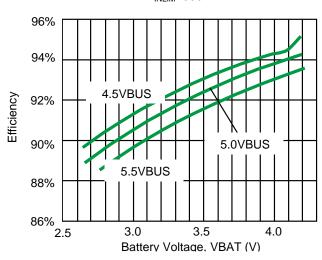


Figure 8. Charger Efficiency vs. V_{BUS} , I_{INLIM} =500mA

Figure 10. Auto-Charge Startup at V_{BUS} Plug-in, I_{INLIM} =500mA, V_{BAT} =3.9V

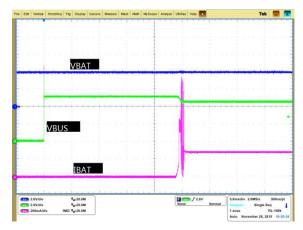


Figure 11. Auto-Charge Startup with 300mA Limited Charger/Adaptor, I_{INLIM}=500mA, V_{BAT}=3.9V

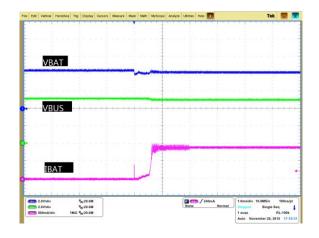


Figure 13. Battery Removal / Insertion during Charging, $V_{BAT}\!\!=\!\!3.9V,\,I_{OCHARGE}\!\!=\!\!956mA,\,No\,\,I_{INLIM},\,TE\!=\!0$

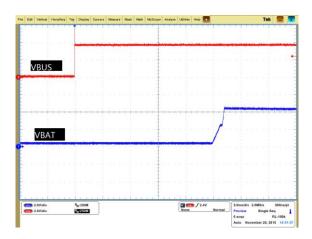


Figure 15. No Battery at V_{BUS} Power-up

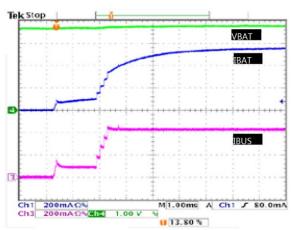


Figure 12. Charger Startup with HZ_MODE Bit Reset, I_{INLIM}=500mA, I_{OCHARGE}=956mA, OREG=4.2V, V_{BAT}=3.6V

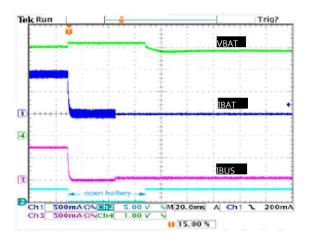


Figure 14. Battery Removal / Insertion during Charging, $V_{\text{BAT}}\!=\!3.9\text{V, }I_{\text{OCHARGE}}\!=\!956\text{mA, No }I_{\text{INLIM}},\,\text{TE=1}$

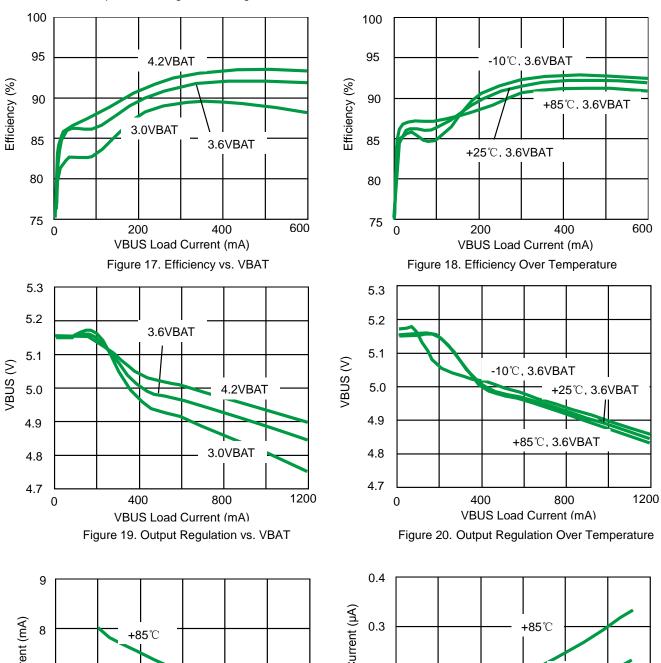



Figure 16. VBUS Current with Battery Open

Boost Mode Typical Characteristics

Unless otherwise specified, using circuit of Figure 1, V_{BAT}=3.6V, T_A=25℃.

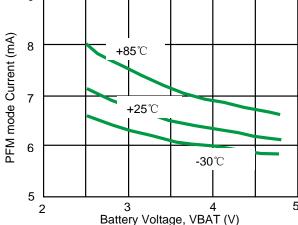


Figure 21. PFM mode Current

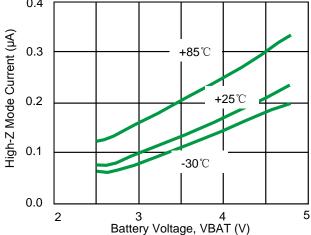


Figure 22. High-Impedance Mode Battery Current

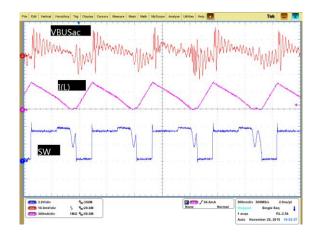


Figure 23. Boost PWM Waveform

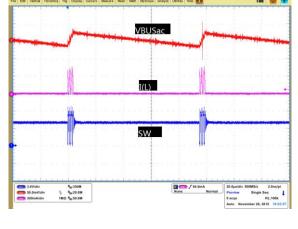


Figure 24. Boost PFM Waveform

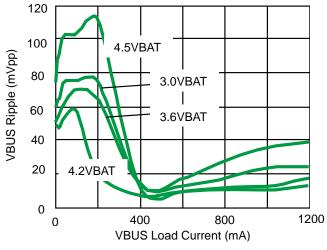


Figure 25. Output Ripple vs. VBAT

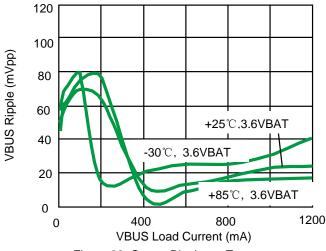


Figure 26. Output Ripple vs. Temperature

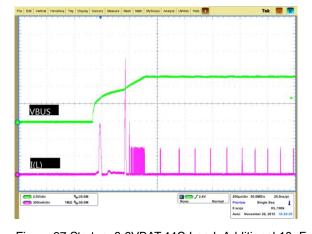


Figure 27.Startup, 3.6VBAT,44 Ω Load, Additional 10 μ F, X5R Across VBUS

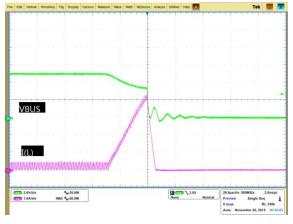


Figure 28. VBUS Fault Response, 3.6VBAT

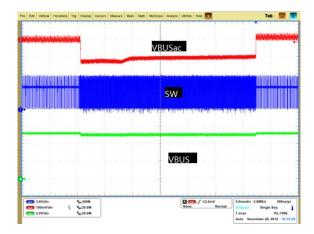


Figure 29. Load Transient, 1-150-1mA, t_R=t_F=100ns

Circuit Description/ Overview

When charging batteries with a current-limited input source, such as USB, a switching charger's high efficiency over a wide range of output voltages minimizes charging time.

PSC5415E combines a highly integrated synchronous buck regulator for charging with a synchronous boost regulator, which can supply 5V to USB On-The-Go (OTG) peripherals. The regulator employs synchronous rectification for both the charger and boost regulators to maintain high efficiency over a wide range of battery voltages and charge states.

The PSC5415E has three operating modes:

1. Charge Mode (VBUS is valid.):

Charge a single-cell Li-ion or Li-polymer battery.

2. Boost Mode:

Provide 5V power to USB-OTG with an integrated synchronous rectification boost regulator using the battery as input.

3. Standby mode (VBUS is not valid.)

Current flow from VBUS to the battery or from the battery to VBUS is blocked.

- 1) If HZ_MODE=0, boost can be turned on thru I2C.
- 2) If HZ_MODE=1, boost is always off.

Note: Default settings are denoted by bold typeface.

Charge Mode

In Charge Mode, PSC5415E employs four regulation loops:

- 1. Input Current: Limits the amount of current drawn from VBUS. This current is sensed internally and can be programmed through the I²C interface.
- 2. Charging Current: Limits the maximum charging current. This current is sensed using an external R_{SENSE} resistor.
- 3. Charge Voltage: The regulator is restricted from exceeding this voltage. As the internal battery voltage rises, the battery's internal impedance and R_{SENSE} work in conjunction with the charge voltage regulation to decrease the amount of current flowing to the battery. Battery charging is completed when the charging current drops below the I_{TERM} threshold.
- 4. Input Voltage: PSC5415E employ an additional loop to limit the amount of drop on VBUS to a programmable voltage (V_{SP}) to accommodate "special chargers" that limit current to a lower current than might be available from a "normal" USB wall charger.

Battery Charging Curve

If the battery voltage is below V_{SHORT} , a linear current source pre-charges the battery until V_{BAT} reaches V_{SHORT} . The PWM charging circuit is then started and the battery is charged with a constant current if sufficient input power is available. The current slew rate is limited to prevent overshoot.

The PSC5415E is designed to work with a current-limited input source at VBUS. During the current regulation phase of charging, I_{INLIM} or the programmed charging current limits the amount of current available to charge the battery and power the system. The effect of I_{INLIM} on I_{CHARGE} can be seen in Figure 31.

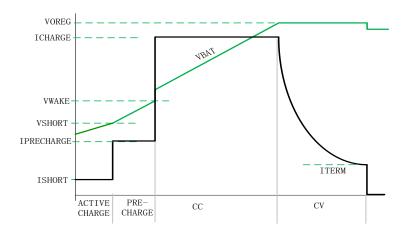


Figure 30. Charge Curve, I_{CHARGE} Not Limited by I_{INLIM}

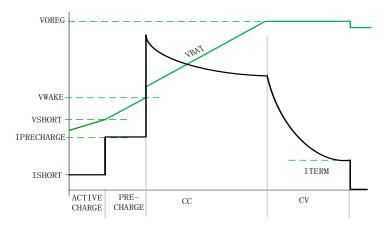


Figure 31. Charge Curve, I_{INLIM} Limits I_{CHARGE}

Assuming that V_{OREG} is programmed to the cell's fully charged "float" voltage, the current that the battery accepts with the PWM regulator limiting its output (sensed at VBAT) to V_{OREG} declines, and the charger enters the voltage regulation phase of charging. When the current declines to the programmed I_{TERM} value, the charge cycle is complete. Charge current termination can be disabled by resetting the TE bit (REG1[3]).

The charger output or "float" voltage can be programmed by the OREG bits from 4.1V to 4.4V as shown in Table 1.

Table 1. OREG Bits (OREG[7:2]) vs. Charger V_{OUT} (V_{OREG}) Float Voltage

Decimal	Hex	VOREG
0-1	00-01	4.10
2-35	02-23	4.20
36-44	24-2C	4.35
45-62	2D-3E	4.40

The following charging parameters can be programmed by the host through I²C:

Table 2. Programmable Charging Parameters

Parameter	Name	Register
Output Voltage Regulation	V _{OREG}	REG2[7:2]
Battery Charging Current Limit	I _{OCHRG}	REG4[6:4]
Input Current Limit	I _{INLIM}	REG1[7:6]
Charge Termination Limit	I _{TERM}	REG4[2:0]
Weak Battery Voltage	V_{LOWV}	Reserved.

A new charge cycle begins when one of the following occurs:

The battery voltage falls below V_{OREG}-V_{RCH}

Charge Current Limit (I_{OCHARGE}) & Termination Current Limit

Table 3. IOCHARGE (REG4 [6:4]) Current as Function of IOCHARGE Bits and RSENSE Resistor Values

DEC	DEC BIN HEX V _{RSENSE} (mV)	I _{OCHAR}	_{GE} (mA)		
DEC	DIN	ПЕХ	V _{RSENSE} (mV)	68mΩ	56mΩ
0	000	00	32.8	482	586
1	001	01	39.3	578	702
2	010	02	52.4	771	936
3	011	03	59.0	867	1054
4	100	04	72.1	1060	1288
5	101	05	78.7	1156	1405
6	110	06	91.8	1349	1639
7	111	07	98.3	1446	1755

Table 4. Terminated (REG4 [2:0]) Current as Function of ITERM Bits and RSENSE Resistor Values

DEC	DIN	UEV	\/ (m\/)	I _{TERM} (mA)		
DEC	BIN	HEX	V _{RSENSE} (mV)	68mΩ	56mΩ	
0	000	00	2.5	36	45	
1	001	01	3.8	55	68	
2	010	02	5.0	73	89	
3	011	03	6.3	91	113	
4	100	04	7.5	110	134	
5	101	05	8.8	128	157	
6	110	06	10.0	147	179	
7	111	07	11.3	165	202	

Current charge termination is enabled when TE (REG1[3])=1. When charging current falls below I_{TERM}, PWM charging stops. If the charging source is still connected, STAT changes to CHARGE DONE (10).

PWM Controller in Charge Mode

The IC uses a current-mode PWM controller to regulate the output voltage and battery charge currents.

Safety Timer

The charger has a time out function for wake-up charge and normal charge. For wake-up charge the internal timer is set to typically 90 minutes. After 90 minutes of charging, if Vbat is still lower than 3.1V (typical), the charger is turned OFF and will not resume operation.

For normal charging the timer is set to 12 hours.

If the charger is still operating after typical 12 hours it will be turned OFF and will resume operating only if the condition (VOREG-VBAT) >100mV is met.

The 90-min and 12-hour timer can be reset by plugging out/in the adapter.

PSC5415E also has a 32s-timer for watch-dog function which is only for OTG mode. If it does not receive any read/write command during 32s, it will be reset to default parameters and quit OTG mode.

VBUS POR / Non-Compliant Charger Rejection

When VBUS is inserted, VBUS must remain above $V_{IN(MIN)1}$ and below VBUS_{OVP} for t_{VBUS_VALID} (25ms) before the IC initiates charging. The VBUS validation sequence always occurs before charging is initiated or re-initiated (for example, after a VBUS OVP fault or a V_{RCH} recharge initiation).

tvbus_valid ensures that unfiltered 50/60Hz chargers and other non-compliant chargers are rejected.

Input Current Limiting

To minimize charging time without overloading VBUS current limitations, the IC's input current limit can be programmed by the I_{INLIM} bits (REG1[7:6]).

Table 5. Input Current Limit

I _{INLIM} REG1[7:6]	Input Current Limit
00	150mA
01	500mA
10	800mA
11	No Limit

Special Charger

The PSC5415E have additional functionality to limit input current in case a current-limited "special charger" is supplying VBUS. The PSC5415E slowly increases the charging current until either:

 I_{INLIM} or I_{OCHARGE} is reached or $V_{\text{BUS}} = V_{\text{SP}}$

If V_{BUS} collapses to V_{SP} when the current is ramping up, the PSC5415E charge with an input current that keeps V_{BUS}=V_{SP}.

Table 6. Input Voltage Limit

V _{SP} REG5[2:0]	Input Voltage Limit (V)
000	4.214
001	4.29
010	4.366
011	4.442
100	4.52(Default)
101	4.59
110	4.67
111	4.8

Thermal Protection

If the temperature increases beyond $T_{SHUTDOWN}$; charging is suspended.

Note that as power dissipation increases, the effective θ_{JA} decreases due to the larger difference between the die temperature and its ambient.

Charge Mode Input Supply Protection

Input Supply Low-Voltage Detection

The IC continuously monitors VBUS during charging. If V_{BUS} falls below V_{IN(MIN)}, the IC terminates charging.

Input Over-Voltage Detection

When the VBUS exceeds VBUS_{OVP}, the IC suspends charging

When VBUS falls about 150mV below VBUS_{OVP}, the charging resumes after VBUS is revalidated (see VBUS POR / Non-Compliant Charger Rejection).

Charge Mode Battery Detection & Protection

VBAT Over-Voltage Protection

The OREG voltage regulation loop prevents VBAT from overshooting the OREG voltage by more than 50mV when the battery is removed. When the PWM charger runs with no battery, the TE bit is not set and a battery is inserted that is charged to a voltage higher than V_{OREG}; PWM pulses stop.

System Operation with No Battery

The PSC5415E continue charging after V_{BUS} POR with the default parameters, regulating the V_{BAT} line to 4.2V until the host processor issues commands. In this way, the PSC5415E can start the system without a battery.

Using following sequence is suggested:

- 1. When VBUS is plugged in, I_{INLIM} is set to 500mA until the system processor powers up and can set parameters through I²C.
- 2. Program the Safety Register.
- 3. Set I_{INLIM} to 11 (no limit).
- 4. Set OREG to the desired value (typically 4.2V).
- 5. Set I_{INLIM} to 500mA if a USB source is connected.

During the initial system startup, while the charger IC is being programmed, the system current is limited to 500mA before

Charger Status

The STAT pin is for test purpose, the IC provides the charging status in REG0[5:4].

Operational Mode Control

OPA_MODE (REG1[0]) and the HZ_MODE (REG1[1]) bits in conjunction with the DISABLE pin define the operational mode of the charger.

Table 7. Operation Mode Control

HZ_ MODE	OPA_MODE	DISABLE	Operation Mode
X	0	0	Charge
X	X	1	Charger disabled
0	1	X	Boost
1	Х	Х	High Impedance

The IC resets the OPA_MODE bit whenever the boost is deactivated, whether due to a fault or being disabled by setting the HZ_MODE bit. Setting HZ_MODE=1 through I²C won't disable charger but only disable boost function.

Boost PWM Control

The IC uses a minimum on-time and computed minimum off-time to regulate VBUS. The regulator achieves excellent transient response by employing current-mode modulation. This technique causes the regulator to exhibit a load line. During PWM Mode, the output voltage drops slightly as the input current rises. With a constant V_{BAT}, this appears as a constant output resistance.

PFM Mode

If $V_{BUS} > VREF_{BOOST}$ (nominally 5.15V) when the minimum off-time has ended, the regulator enters PFM Mode. Boost pulses are inhibited until $V_{BUS} < VREF_{BOOST}$. The minimum on-time is increased to enable the output to pump up sufficiently with each PFM boost pulse. Therefore the regulator behaves like a constant on-time regulator, with the bottom of its output voltage ripple at 5.15V in PFM Mode.

Startup

When the boost regulator is shut down, current flow is prevented from V_{BAT} to V_{BUS} , as well as reverse flow from V_{BUS} to V_{BAT} .

SS State

This IC has built-in soft start function to prevent the IC being out of control. The reference voltage is slightly raised to the normal voltage within about 50us. In SS state, peak current is limited as 1.5x of that in normal condition. When SS is done, the current limit is set to 100%.

BST State

This is the normal operating mode of the regulator. The regulator uses a minimum t_{OFF} -minimum t_{ON} modulation scheme. The minimum t_{OFF} is proportional to $\frac{V_{\text{IN}}}{V_{\text{OUT}}}$ Which keeps the regulator's switching frequency reasonably constant in CCM. $t_{\text{ON(MIN)}}$ is proportional to VBAT and is a higher value if the inductor current reached 0 before $t_{\text{OFF}(MIN)}$ in the prior cycle. To ensure the VBUS does not pump significantly above the regulation point, the boost switch remains off as long as

FB > V_{REF} .

Boost Faults

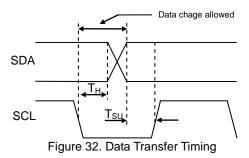
If a BOOST fault occurs:

- 1. The STAT pin pulses.
- 2. OPA_MODE bit is reset.
- 3. The power stage is in High-Impedance Mode.

I²C Interface

The PSC5415E's serial interface is compatible with Standard, Fast, Fast Plus, and High-Speed Mode I²C-Bus® specifications. The PSC5415E's SCL line is an input and its SDA line is a bi-directional open-drain output; it can only pull down the bus when active. The SDA line only pulls LOW during data reads and when signaling ACK. All data is shifted in MSB (bit 7) first.

Slave Address


Table 8. I²C Slave Address Byte

Part Types	7	6	5	4	3	2	1	0
PSC5415E	1	1	0	1	0	1	0	R/W

In hex notation, the slave address assumes a 0 LSB. The hex slave address for the PSC5415E is D4H.

Bus Timing

As shown in Figure 32, data is normally transferred when SCL is LOW. Data is clocked in on the rising edge of SCL. Typically, data transitions shortly at or after the falling edge of SCL to allow ample time for the data to set up before the next SCL rising edge.

Each bus transaction begins and ends with SDA and SCL HIGH. A transaction begins with a START condition, which is defined as SDA transitioning from 1 to 0 with SCL HIGH, as shown in Figure 33.

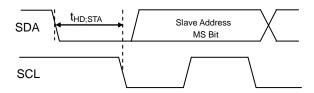
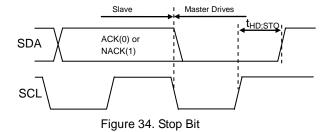



Figure 33. Start Bit

A transaction ends with a STOP condition, which is defined as SDA transitioning from 0 to 1 with SCL HIGH, as shown in Figure 34.

During a read from the PSC5415E (Figure 37), the master issues a Repeated Start after sending the register address and before resending the slave address. The Repeated Start is a 1-to-0 transition on SDA while SCL is HIGH, as shown in Figure 35.

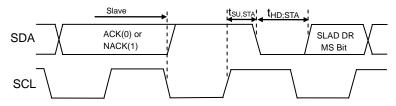


Figure 35. Repeated Start Timing

Read and Write Transactions

The figures below outline the sequences for data read and write. Bus control is signified by the shading of the packet, defined as Master Drives Bus and Slave Drives Bus

All addresses and data are MSB first.

Table 9. Bit Definitions for Figure 36, Figure 37

Symbol	Definition
S	START, see Figure 33
А	ACK. The slave drives SDA to 0 to acknowledge the preceding packet.
Ā	NACK. The slave sends a 1 to NACK the preceding packet.
R	Repeated START, see Figure 35
Р	STOP, see Figure 34

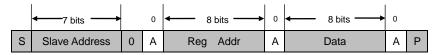


Figure 36. Write Transaction

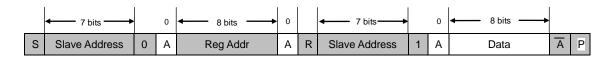


Figure 37. Read Transaction

Register Descriptions

Table 10. I²C Register Address

IC	Register			Address Bits						
IC	Name	REG#	7	6	5	4	3	2	1	0
	CONTROL0	0	0	0	0	0	0	0	0	0
	CONTROL1	1	0	0	0	0	0	0	0	1
	OREG	2	0	0	0	0	0	0	1	0
	IC_INFO	3	0	0	0	0	0	0	1	1
PSC5415E	IBAT	4	0	0	0	0	0	1	0	0
	SP_CHARGER	5	0	0	0	0	0	1	0	1
	SAFETY	6	0	0	0	0	0	1	1	0
	SPR	51	1	0	0	1	0	0	0	1
	TEST	10	0	0	0	1	0	0	0	0

Table 11. Register Bit Definitions

This table defines the operation of each register bit for all IC versions. Default values are in bold text.

Bit	Name	Value	Туре	Description		
CONTROL	.0			Register Address:00 Default Value=X1XX 0XXX		
7:6	-	-	-	Reserved [1]		
		00	R	Ready		
E. 4	STAT	01	R	Charge in progress		
5:4	SIAI	10	R	Charge done		
		11	-	Reserved		
3	BOOST	0	R	IC is not in Boost Mode		
3	ВООЗТ	1	R	IC is in Boost Mode		
2:0	-	-	-	Reserved		

Note[1]: Any I2C operations can be used to reset 32s timer. If the 5415E is in OTG mode and does not receive any read/write command during 32s, it will be reset to default parameters and quit OTG mode.

Bit	Name	Value	Туре	D	escription			
CONTRO	DL1			Register Address:01	Default Value=0111 0000			
				Input current limit, see Table 5				
				REG01[7:6] BIN	Input Current Limit			
7:6	I _{INLIM}		R/W	00	150mA			
				01	500mA			
				10	800mA			
				11	Unlimited			
5:4	VLOWV		R/W	Reserved.				
3	TE	0	R/W	Disable charge current termina	ation			
3	I L	1	17/77	Enable charge current termina	tion			
2	CE	0	R/W	Enable charge;				
۷	OL.	1	10,00	Disable charge;				
1	HZ_MODE	0	R/W	Not High-Impedance Mode				
	TIZ_WODE	1	10,00	High-Impedance Mode				
0	OPA_MODE	0	R/W	Charge Mode				
O	OI A_INIODL	1	17/77	Boost Mode				
OREG				Register Address:02	Default Value=0000 0000			
				Charger output "float" voltage; increments; defaults to 00000	programmable from 4.1 to 4.4V 0 (4.1V) , see Table 1			
7.0	0050		DAM	REG02[7:2] BIN	VOREG			
7:2	OREG		R/W	000000 - 000001	4.1V			
				000010 - 100011	4.2V			
				100100 - 101100	4.35V			
				101101 - 111110	4.4V			
1:0	-	0	R/W	-				
IC_INFO				Register Address: 03 or 3B	Default Value=1111 0XXX			
7:5	Vendor Code	111	R	Identifies Prisemi as the IC sup	pplier			
4:0	TN	10	R	Product Tracking Number;				

Bit	Name	Value	Туре	Description					
IBAT				Register Address: 04		Default Value=1000 1001			
7	RESET	1	W	Writing a 1 reset all charge parameters. Read returns 0					
_				Programs the maximum charge current, see Table 3					
		Table 3	R/W	REG51[0]	REG04[6:4]	□ □ □ Vrsns(mV	Icharge (mA)		
					BIN		68mΩ	56mΩ	
				0	000	32.8	482	586	
					001	39.3	578	702	
					010	52.4	771	936	
					011	59	867	1054	
					100	72.1	1060	1288	
					101	78.7	1156	1405	
6:4	IOCHARGE				110	91.8	1349	1639	
					111	98.3	1446	1755	
					000	26.7	392	477	
					001	33.3	490	595	
					010	40	588	714	
				1	011	46.7	686	834	
					100	53.3	784	952	
					101	60	882	1071	
					110	66.7	980	1191	
					111	86.7	1275	1548	
3	-	-	R	Reserved.					
				Programs the terminated charge-done current, see Table 4			le 4		
	ITERM	Table 4	R/W	REG04[2:0]		ITERM (mA)			
2:0				BIN		Vrsns	68mΩ	56mΩ	
				000		2.5	36	45	
				001		3.8	55	68	
				010		5.0	73	89	
				011		6.3	91	113	
				100		7.5	110	134	
				101		8.8	128	157	
				110		10.0	147	179	
				111		11.3	165	202	

Bit	Name	Value	Туре	Description			
SP_CHARGER				Register Address: 05	Default Value=001X X100		
7	ADD20MV	0	R/W	The OREG value will be increased 20mv if bit7 is set "1"; For example, 4.2 will be 4.22V if set ADD20MV=1;			
6:5	Reserved	-	-	Reserved			
4	SP	0	R	Special charger is not active (V _{BUS} is able to stay above V _{SP})			
4	31	1		Special charger has been detected and V_{BUS} is being regulated to V_{SP}			
3	EN_LEVEL	0	R/W	Reserved.			
		100	R/W	Input voltage limit, see Table 6			
	VSP			REG05[2:0] BIN	VSP (V)		
				000	4.214		
				001	4.29		
2:0				010	4.366		
				011	4.442		
				100	4.52(default)		
				101	4.59		
				110	4.67		
				111	4.8		
SPR				Register Address: 51	Default Value=0000 0000		
1	FSE	0	R/W	0: Choose PWM frequency 1.5Mhz; 1: Choose PWM frequency 2.0Mhz;			
0	ICE	0	R/W	Option for Charge current; see table 3			
TEST				Register Address: 10	Default Value=0000 0000		
2:0	TEST_STAT	000	R/W	000: STAT output is low if VBUS is valid for charge, otherwise STAT is floating output; 111: STAT output is always floating;			

PCB Layout Considerations

- 1. To obtain optimal performance, the power input capacitors, connected from input to PGND, should be placed as close as possible to the pin. The output inductor should be placed close to the IC and the output capacitor connected between the inductor and PGND of the IC. The intent is to minimize the current path loop area from the SW pin through the LC filter and back to the PGND pin. To prevent high frequency oscillation problems, proper layout to minimize high frequency current path loop is critical. (See Figure 38.) The sense resistor should be adjacent to the junction of the inductor and output capacitor. Route the sense leads connected across the RSNS back to the IC, close to each other (minimize loop area) or on top of each other on adjacent layers (do not route the sense leads through a high-current path). (See Figure 39.)
- 2. Place all decoupling capacitors close to their respective IC pins and close to PGND (do not place components such that routing interrupts power stage currents). All small control signals should be routed away from the high current paths.
- 3. The PCB should have a ground plane (return) connected directly to the return of all components through vias (two vias per capacitor for power-stage capacitors, two vias for the IC PGND, one via per capacitor for small- signal components). A star ground design approach is typically used to keep circuit block currents isolated (high-power/low-power small-signal) which reduces noise-coupling and ground-bounce issues. A single ground plane for this design gives good results. With this small layout and a single ground plane, there is no ground-bounce issue, and having the components segregated minimizes coupling between signals.
- 4. The high-current charge paths into VBUS, PMID and from the SW pins must be sized appropriately for the maximum charge current in order to avoid voltage drops in these traces. The PGND pins should be connected to the ground plane to return current through the internal low-side FET.
- 5. Place 22μF input capacitor as close to PMID pin and PGND pin as possible to make high frequency current loop area as small as possible. Place 1μF input capacitor as close to VBUS pin and PGND pin as possible to make high frequency current loop area as small as possible (see Figure 40).

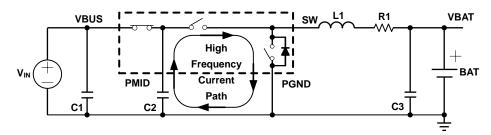
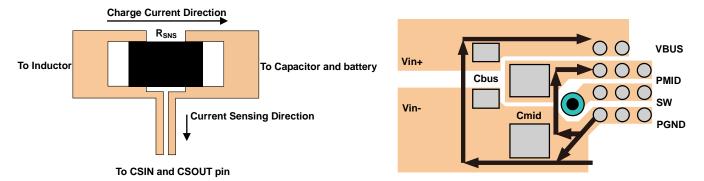
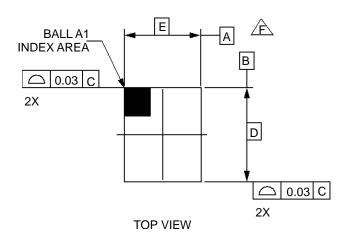
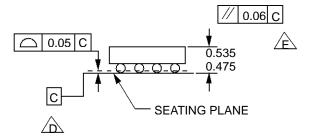


Figure 38. high frequency current path

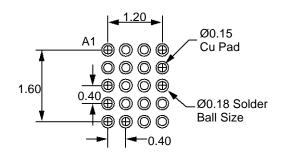
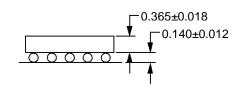
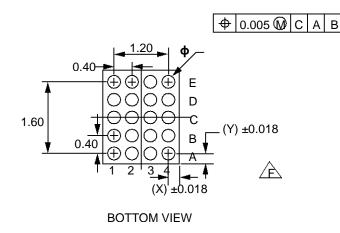

Figure 39. Sensing resistor PCB layout

Figure 40. Input capacitor position and PCB layout example


Product dimension



RECOMMENDED LAND PATTERN (NSMD TYPE)

SIDE VIEWS

NOTES:

A.NO JEDEC REGISTRATION APPLIES.
B.DIMENSIONS ARE IN MILLIMETERS.

C.DIMENSIONS AND TOLERANCE PER ASMER14.5M,1994.

DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.

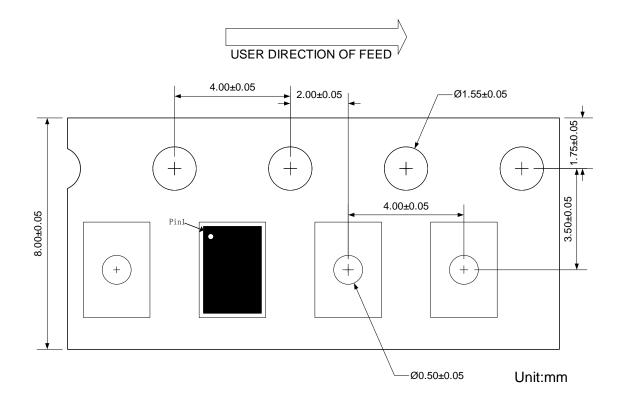
<u>PACKAGE NOMINAL HEIGHT IS 586 MICRONS</u> ±39 MICRONS(547-625 MICRONS).

PRODUCT DATASHEET.

G.DRAWING FILNAME: MKT-UC020AArev2.

Figure 41. 20-Ball WLCSP, 4x5 Array, 0.4mm Pitch, 150µm Ball

Product-Specific Dimensions (mm)


Product	D	E	х	Υ	ф
PSC5415E	1.901±0.030	1.501±0.030	0.150	0.150	0.150±0.020

Ordering Information

Device	Package	Reel	Shipping
PSC5415E	20-Ball WLCSP (Pb-Free)	7"	3000 / Tape & Reel

Load with Information

IMPORTANT NOTICE

and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Prisemi reserves the right to change the circuitry and/or specifications without notice at any time. Customers should obtain the latest relevant information and datasheets before placing orders and should verify that such information is current and complete.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.