N-Channel MOSFET ### **Description** The PSM6N03R6L uses split gate trench technology to provide excellent $R_{\text{DS(ON)}}$ and low gate charge. This device is suitable for power management and high efficiency applications at high switching frequencies applications. | MOSFET Product Summary | | | | |------------------------|-----------------------------|--------------------|--| | V _{DS} (V) | $R_{DS(on)}(m\Omega)(Typ)$ | I _D (A) | | | 30 | 4.7@ V _{GS} = 10V | 23 | | | | 6.8@ V _{GS} = 4.5V | 23 | | #### **Feature** - ➤ Low R_{DS(ON)} Ensures On-State Losses are Minimized - ➤ Excellent Q_{gd} x R_{DS(ON)} Product(FOM) - Advanced Technology for DC-DC Converts - Small Form Factor Thermally Efficient Package Enables Higher Density End Products - > 100% UIS (Avalanche) Rated - ➤ Lead-Free Finish; RoHS Compliant - > Halogen and Antimony Free. "Green" Device #### **Applications** - PWM applications - Load switch - Power management - > DC-DC Converters - Wireless Chargers **Circuit Diagram** Marking (Top View) ## Absolute maximum rating@25°C | Rating | | Symbol | Value | Units | |---|-----------------------|-----------------|----------|-------| | Drain-Source Voltage | | V _{DS} | 30 | V | | Gate-Source Voltage | | V_{GS} | ±20 | V | | Drain Current-Continuous ¹⁾ | T _C =25°C | | 23 | А | | Diam Current-Continuous | T _C =100°C | l _D | 14.6 | | | Pulsed Drain Current ²⁾ | | I _{DM} | 92 | Α | | Total Power Dissipation ³⁾ | | P_{D} | 4.6 | W | | Avalanche Current ⁴⁾ | | I _{AS} | 16 | Α | | Avalanche Energy ⁴⁾ | | E _{AS} | 67 | mJ | | Thermal Resistance , Junction-to-Case ⁵⁾ | | $R_{\theta JC}$ | 12.3 | °C/W | | Thermal Resistance Junction-to-Ambient ⁶ |) | $R_{\theta JA}$ | 61.8 | °C/W | | Junction and Storage Temperature Range | | $T_{J,}T_{STG}$ | -55~+150 | °C | # Electrical characteristics per line@25°C (unless otherwise specified) | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Units | | |---|---|---|------|------|------|-------|--| | Off Characteristics | | | | | | | | | Drain-Source Breakdown Voltage | BV _{DSS} | $V_{GS} = 0V, I_{D} = 250\mu A$ | 30 | - | - | V | | | Zero Gate Voltage Drain Current | I _{DSS} | $V_{DS} = 30V, V_{GS} = 0V$ | - | - | 1.0 | μA | | | Gate-Body Leakage Current | I _{GSS} | $V_{GS} = \pm 20 \text{V}, V_{DS} = 0 \text{V}$ | - | - | ±100 | nA | | | On Characteristics | | | | | | | | | Gate Threshold Voltage | V _{GS(th)} | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$ | 1.0 | 1.5 | 2.0 | V | | | Drain-Source On-State Resistance | D | V _{GS} = 10V,I _D = 8A - | | 4.7 | 6.0 | | | | | $R_{DS(ON)}$ | V _{GS} = 4.5V,I _D = 6A | - | 6.8 | 9.0 | mΩ | | | Dynamic Characteristics ⁷⁾ | | | | | | | | | Input Capacitance | C _{lss} | | - | 820 | - | pF | | | Output Capacitance | C _{oss} | $V_{DS} = 15V, V_{GS} = 0V,$
f = 1.0MHz | - | 216 | - | | | | Reverse Transfer Capacitance | C _{rss} | | - | 15 | - | | | | Switching Characteristics ⁷⁾ | Switching Characteristics ⁷⁾ | | | | | | | | Turn-on Delay Time | t _{d(on)} | | - | 5.0 | - | | | | Turn-on Rise Time | t _r | V _{DS} = 15V, V _{GS} = 10V, | - | 6.0 | - | | | | Turn-Off Delay Time | t _{d(off)} | $R_G = 10\Omega, I_D = 10A$ | - | 33 | - | ns | | | Turn-Off Fall Time | t _f | | - | 17 | - | | | | Total Gate Charge | Q_g | | - | 12.4 | - | | | | Gate-Source Charge | Q_{gs} | $V_{DS} = 15V, V_{GS} = 10V,$
$I_{D} = 10A$ | - | 1.7 | - | nC | | | Gate-Drain Charge | Q_{gd} | | - | 3.9 | - | | | | Gate Resistance | R_g | f=1MHz, Open Drain | - | 4.0 | - | Ω | | | Drain-Source Diode Characteristics | | | | | | | | | Diode Forward Voltage | V _{SD} | V _{GS} = 0V,I _S = 1A | - | 0.7 | 1.2 | V | | #### Notes: - $Computed \ continuous \ current \ assumes \ the \ condition \ of \ T_{J_Max} \ while \ the \ actual \ continuous \ current \ depends \ on \ the \ thermal \ \& \ electro-mechanical \ application$ - poard design. Repetitive Rating: Pulse width limited by maximum junction temperature(T_{J_Max}=150°C). Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%. This single-pulse measurement was taken under the following condition (L=0.1mH,V_{GS}=10V,V_{DS}=30V)while it's value is limited by T_{J_Max}=150°C. - Device mounted on infinite heatsink. - Device mounted on FR-4 substrate PC board, 2oz copper, with 1inch square copper pad layout. - Guaranteed by design, not subject to production. ## **Typical Characteristics** Fig.2 Typical Transfer Characteristic Fig.3 Typical On-Resistance vs Drain Current and Temperature Fig.6 Maximum Drain Current vs. Case Temperature ## **N-Channel MOSFET** ## PSM6N03R6L Fig.7 Gate Charge Characteristics Fig.8 Typical Junction Capacitance Fig.9 Safe Operation Area Fig.10 Transient Thermal Resistance # Product Dimension (DFN2020-6L) Side View | Dim | Millin | neters | Inches | | | |-----|-----------|--------|------------|-------|--| | Dim | Min | Max | Min | Max | | | Α | 0.50 | 0.60 | 0.020 | 0.024 | | | A1 | 0.15 Ref. | | 0.006 Ref. | | | | А3 | 0.00 | 0.05 | 0.000 | 0.002 | | | D | 1.95 | 2.05 | 0.077 | 0.081 | | | Е | 1.95 | 2.05 | 0.077 | 0.081 | | | D1 | 0.875 | 0.925 | 0.034 | 0.036 | | | D2 | 0.675 | 0.725 | 0.027 | 0.029 | | | E1 | 0.875 | 0.925 | 0.034 | 0.036 | | | E2 | 0.275 | 0.325 | 0.011 | 0.013 | | | b | 0.30 Ref. | | 0.012 Ref. | | | | е | 0.65 Ref. | | 0.026 Ref. | | | | L | 0.25 | 0.35 | 0.010 | 0.014 | | # Load with information Unit:mm # Ordering information | Package | Reel | Shipping | |------------|------|--------------------| | DFN2020-6L | 7" | 3000 / Tape & Reel | #### **IMPORTANT NOTICE** and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. Website: http://www.prisemi.com For additional information, please contact your local Sales Representative. ©Copyright 2009, Prisemi Electronics Prisemi is a registered trademark of Prisemi Electronics. All rights are reserved.