Description

NPN switching transistor in a SOT-23 plastic package.

Feature

> High current (max. 600 mA)
> Lead finish:100\% matte $\mathrm{Sn}(\mathrm{Tin})$
> Mounting position: Any
> Qualified max reflow temperature: $260^{\circ} \mathrm{C}$
> Device meets MSL 1 requirements
> Pure tin plating: 7~17 um
> Pin flatness: $\leq 3 \mathrm{mil}$

Fig. 1 Simplified outline and symbol. PT23T2222A/SOT-23

Applications

> Switching and linear amplification.

Maximum Ratings and Thermal Characteristics(TA=25 ${ }^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Value	Units
Collector-base voltage	$\mathrm{V}_{\text {CBO }}$	75	V
Collector-emitter voltage	$\mathrm{V}_{\text {CEO }}$	40	V
Emitter-base voltage	$\mathrm{V}_{\text {EBO }}$	6	V
Collector current (DC)	IC_{C}	600	mA
Collector Dissipation	$\mathrm{Pc}_{\text {C }}$	300	mW
Thermal resistance from junction to ambient	$\mathrm{R}_{\text {өJA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	150	${ }^{\circ} \mathrm{C}$
Junction temperature	T_{J}	$-55 \sim 150$	${ }^{\circ} \mathrm{C}$

Electrical characteristics per line@(unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Typ.	Max.	Units
Collector-base breakdown voltage	$V_{\text {(BR)CBO }}$	$\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0$	75			V
Collector-emitter breakdown voltage	$V_{\text {(BR)CEO }}$	$\mathrm{Ic}_{\mathrm{c}}=10 \mathrm{~mA}, \mathrm{l}_{\mathrm{B}}=0$	40			V
Emitter-base breakdown voltage	$V_{\text {(BR)EBO }}$	$\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{IC}=0$	6			V
Collector cut-off current	Icbo	$\mathrm{V}_{C B}=60 \mathrm{~V}$, , $\mathrm{IE}=0$			0.01	$\mu \mathrm{A}$
Collector cut-off current	Icex	$V_{C E}=30 \mathrm{~V}, \mathrm{~V}_{\text {BE(off) }}=3 \mathrm{~V}$			0.01	$\mu \mathrm{A}$
Emitter cut-off current	Iebo	$\mathrm{V}_{\mathrm{Eb}}=3 \mathrm{~V}, \mathrm{lc}=0$			0.1	$\mu \mathrm{A}$
DC current gain	hfe	$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{IC}=150 \mathrm{~mA}$	100		300	
		$\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{IC}=500 \mathrm{~mA}$	42		-	
Collector-emitter saturation voltage	$V_{\text {cE(sat) }}$	$\mathrm{IC}_{\mathrm{C}}=150 \mathrm{~mA} ; \mathrm{l}_{\mathrm{B}}=15 \mathrm{~mA}$			0.3	V
		$\mathrm{IC}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$			1.0	V
Base-emitter saturation voltage	$V_{\text {bE(sat) }}$	$\mathrm{Ic}=150 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=15 \mathrm{~mA}$			1.2	V
		$\mathrm{IC}_{\mathrm{C}}=500 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=50 \mathrm{~mA}$			2.0	V
Transition frequency	f_{T}	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}, \mathrm{lc}=20 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}$	300			MHz
Delay time	$\mathrm{t}_{\text {d }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}(\mathrm{off})}=-0.5 \mathrm{~V}, \\ & \mathrm{IC}_{\mathrm{C}}=150 \mathrm{~mA}, \mathrm{I}_{\mathrm{B} 1}=15 \mathrm{~mA} \end{aligned}$			10	ns
Rise time	tr				25	ns
Storage time	t_{s}	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=30 \mathrm{~V}, \mathrm{IC}_{\mathrm{C}}=150 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{B} 1}=-\mathrm{I}_{\mathrm{B} 2}=15 \mathrm{~mA} \end{aligned}$			225	ns
Fall time	tf_{f}				60	ns

pulse test: Pulse Width $\leqslant 300 \mu \mathrm{~s}$, Duty Cycle $\leqslant 2.0 \%$.

Typical Characteristics

Fig 1 static Characteristic

Fig $2 h_{\text {PE }}-I_{c}$

Fig $3 \mathrm{v}_{\mathrm{ctan}}$ - I_{c}

Fig $5 \mathrm{I}_{\mathrm{c}}$ — v_{gE}

Fig $7 f_{T} — I_{c}$

Fig $4 \mathrm{~V}_{\text {Beatat }}$ - I_{c}

Fig $8 \mathrm{P}_{\mathrm{c}}$ — T_{a}

Solder Reflow Recommendation

Remark: Pb free for $260^{\circ} \mathrm{C}$; Pb for $245^{\circ} \mathrm{C}$.
Product dimension(SOT-23)

Din	Millimeters		Inches	
	Min	Max	Min	Max
A	0.900	1.150	0.035	0.045
A1	0.000	0.100	0.000	0.004
A2	0.900	1.050	0.035	0.041
b	0.300	0.500	0.012	0.020
c	0.080	0.150	0.003	0.006
D	2.800	3.000	0.110	0.118
E	1.200	1.400	0.047	0.055
E1	2.250	2.550	0.089	0.100
e	0.950 Typ.		0.037	
e1yp.				
L	1.800	2.000	0.071	0.079
L1	0.550 Ref.		0.022 Ref.	
θ	0.300	0.500	0.012	0.020
0°		8°	$0 \circ$	8°

Ordering information

Device	Package	Shipping
PT23T2222A	SOT-23 (Pb-Free)	$3000 /$ Tape \& Reel

Marking information

Load with information

IMPORTANT NOTICE

$(\mathbb{P}$ and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi) ,Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com For additional information, please contact your local Sales Representative. ©Copyright 2009, Prisemi Electronics (P) Prisemi is a registered trademark of Prisemi Electronics All rights are reserved.

