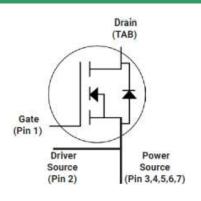
SIC MOSFET

Description


MOSFET Product Summary					
V _{DS} (V)	$R_{DS(on)}(m\Omega)$	I _D (A)			
1700	750@ V _{GS} = 12V	5			

Feature

- ➤ High Speed Switching with Low Capacitances
- Lower QG and Device Capacitances(Coss,Crss)
- > Body Diode with Low VF and Low QRR
- > Faster and More Efficient Switching
- > ROHS Compliant, Halogen free

Applications

- Solar String Inveter and Central Inverter
- > UPS
- Switch Mode Power Supplies
- Power Factor Correction Modules
- Battery Charging
- Auxiliary Power Supply
- > High Voltage Coverter

Schematic diagram

TO-263-7

Absolute maximum rating@25°C

Parameter	Symbol	Rating	Unit		
Drain-Source Voltage	V _{DS}	1700	٧		
Gate-Source Voltage	V _{GS}	-5/+15	V		
Continuous Dusin Current @ V45V	T _C =25°C		5	Α	
Continuous Drain Current @ V _{GS} =15V	T _C =100°C	l _D	3		
Pulsed Drain Current	I _{DM}	10	А		
Power Dissipation	P _D	60	W		
Operating Junction and Storage Temperature	T _J , T _{STG}	-55 to +175	°C		

Thermal Resistance

Parameter	Symbol	Min	Тур	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	-	-	2.5	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	-	-	40	°C/W

PSICM7D2P170R750

Electrical characteristics per line@25°C (unless otherwise specified)

Parameter	Symbol	I Conditions		Тур.	Max.	Units	
Statistic Characteristics							
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_{D} = 100 \mu A$	1700	-	-	V	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 1700V,V _{GS} = 0V	-	-	100	μΑ	
Gate-Body Leakage Current	I _{GSS}	V _{GS} =-5V to 15V,V _{DS} =0V	-	-	100	nA	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 1mA$	1.5	2	3	V	
Recommended turn-on Voltage	V_{GSon}	C4-4:-	-	12	-	V	
Recommended turn-off Voltage	V_{GSoff}	Static	-	-3	-		
	_	V _{GS} = 12V,I _D = 2A	-	750	1000	_	
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} = 12V,I _D = 2A T _{.J} =175°C	-	1350	-	mΩ	
Dynamic Characteristics		J					
Input Capacitance	C _{lss}		-	200	-	pF	
Output Capacitance	C _{oss}	V_{DS} =1000V, V_{AC} =25 mV, f = 1MHz	-	6	-		
Reverse Transfer Capacitance	C _{rss}	1 1111112	-	1	-		
Transconductance	g _{fs}	$V_{DS} = 10V, I_{D} = 2A$	-	1	-	S	
C _{OSS} Stored Energy	E _{oss}	V _{DS} =1000V, f = 1MHz	-	3	-	μJ	
Turn-On Switching Energy	E _{on}	$V_{DS} = 1200V, I_{D} = 2A$	-	27	-	μJ	
Turn-Off Switching Energy	E _{off}	V _{GS} = -3/+12V, L=1mH, T _J =175°C	-	8.4	-		
Turn-on Delay Time	t _{d(on)}		-	11	-	ns	
Turn-on Rise Time	t _r	$V_{DS} = 1200V, I_{D} = 2A$	-	7	-		
Turn-Off Delay Time	t _{d(off)}	$V_{GS} = -3/+12V$, $R_{ext} = 25\Omega$,L=1mH	-	9	-		
Turn-Off Fall Time	t _f		-	6	-		
Total Gate Charge	Q_g		-	8	-		
Gate-Source Charge	Q_{gs}	$V_{DS} = 1200V, I_{D} = 2A,$ $V_{GS} = -3/+12V$	-	1.5	-	nC	
Gate-Drain Charge	Q_{gd}	VGS OF 12V	-	3	-		
Reverse Diode Characteristics							
Famurand Voltage		V _{GS} =0V,I _F = 1A,T _J =25°C	-	3.5	6.0	V	
Forward Voltage	V _{FSD}	V _{GS} =0V,I _F = 1A,T _J =175°C	-	3.0	6.0	V	
Continuous Diode Forward Current	I _s	V _{GS} =0V	-	5	-	Α	

Typical Characteristics

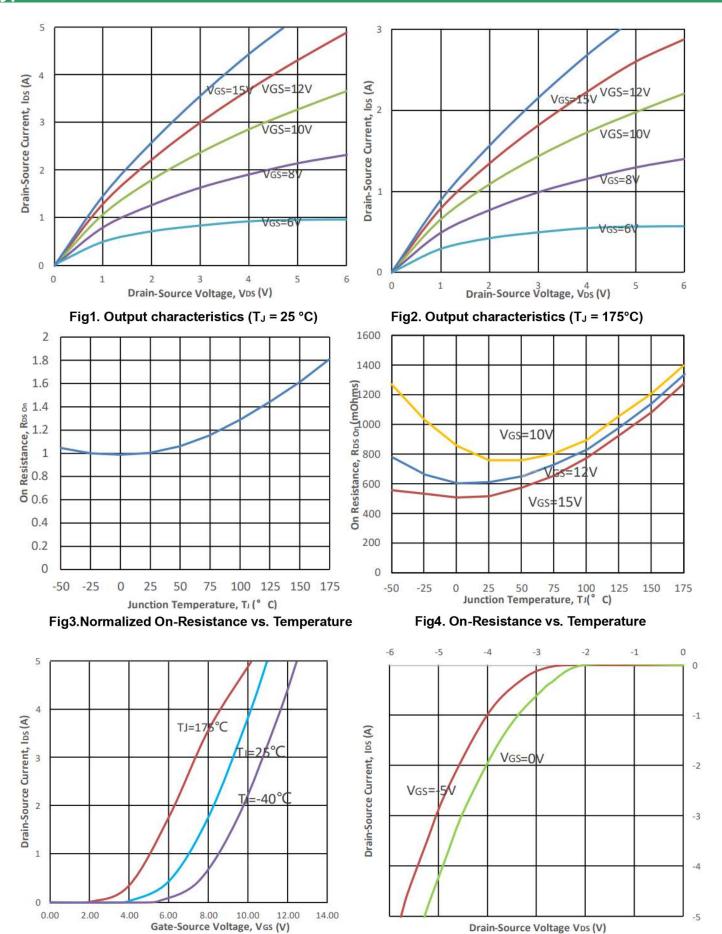


Fig5. Transfer Characteristic

Fig6. Body Diode Characteristic at 25 °C

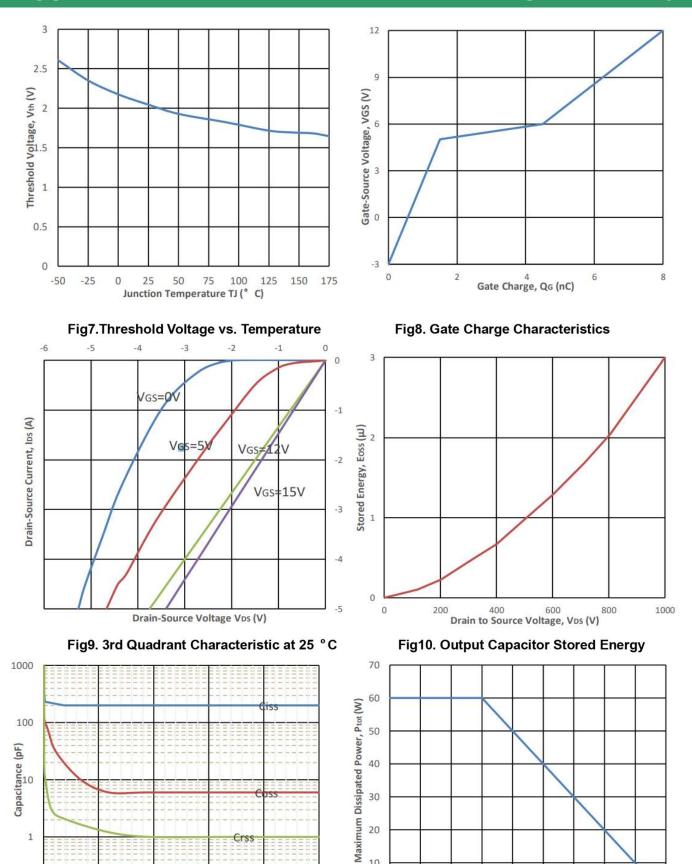


Fig11. Capacitances vs. Drain-Source

400 600 Drain-Source Voltage, VDS (V)

1

0.1

0

Fig12. Max Power Dissipation Derating Vs Tc

25 50 75 100 Case Temperature, Tc (° C)

150

1000

20

10

0

-50

-25

0

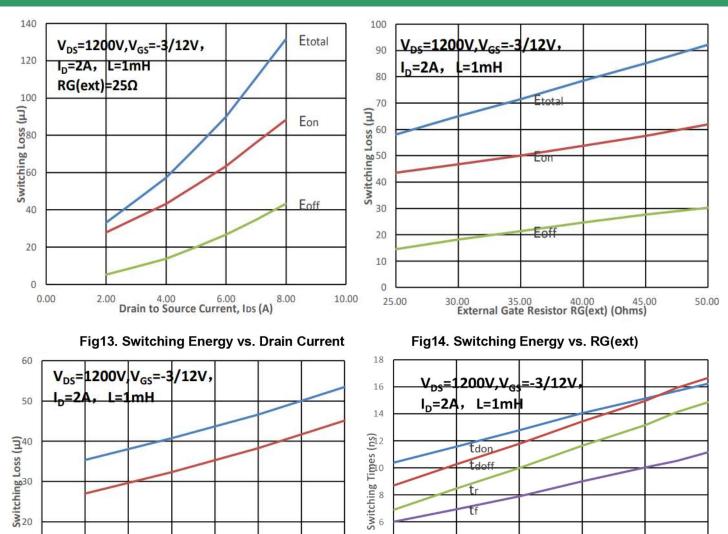


Fig15. Swit ching Energy vs. Temperature

50.00 75.00 100.00 125.00 Junction Temperature, TJ (°C)

Fig16. Switching Times vs. RG(ext) 10 Junction To Case Impedance, ZthJC (oC/W) Ous Drain-Source Current, Ibs (A) 0.1 100us 0.02 0.01 ms SinglePulse 100 ms 0.01 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01 1.E+00 0.1 10 1000 Drain-Source Voltage, VDS (V) Time, tp (s)

25.00

150.00

30.00

35.00

40.00

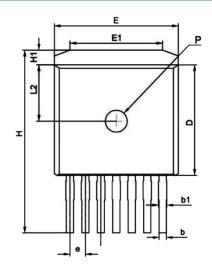
External Gate Resistor RG(ext) (Ohms)

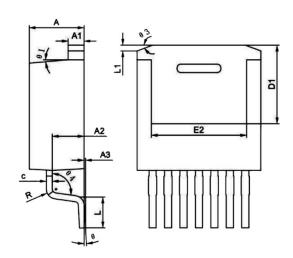
45.00

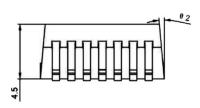
50.00

Fig17.Transient Thermal Impedance

10


0


0.00


25.00

SIC MOSFET

Product dimension (TO-267-7L)

Dive	Millimeters			Dim	Millimeters			
Dim	Min	Туре	Max	Dim	Min	Type	Max	
А	4.40	4.50	4.60	е	1.17	1.27	1.37	
A1	1.25	1.30	1.40	Н	14.75	15.00	15.25	
A2	2.45	2.60	2.70	H1	1.10	1.20	1.30	
A3	0.05	0.13	0.20	L	2.35	2.55	2.75	
b	0.50	0.60	0.70	L1	0.37	0.57	0.77	
b1	0.60	0.70	0.85	L2	4.48	4.63	4.78	
С	0.45	0.50	0.60	θ	0°	3°	5°	
D	8.88	9.08	9.28	θ1	3°	5°	7°	
D1	6.25	6.45	6.65	θ2	3°	5°	7°	
E	9.88	10.18	10.28	θ3	15°	20°	25°	
E1	6.67	7.07	7.47	R	0.75	0.80	0.85	
E2	7.67	7.82	7.97	Р	1.70	1.80	1.90	

IMPORTANT NOTICE

🕜 and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.