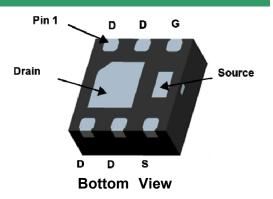
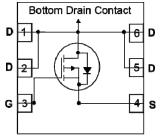


P-Channel MOSFET

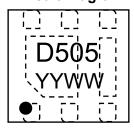
Description

The PPM6N12V5 uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications..


MOSFET Product Summary			
V _{DS} (V)	$R_{DS(on)}(m\Omega)$	I _D (A)	
-12	52 @ V _{GS} =-4.5V	5 A	
	70 @ V _{GS} =-2.5V	-5A	


Feature

- > High Power and current handing capability
- > Lead free product is acquired
- > Surface Mount Package


Applications

- > PWM applications
- ➤ Load switch
- > Power management

Circuit Diagram

Marking (Top View)

Absolute maximum rating@25°C

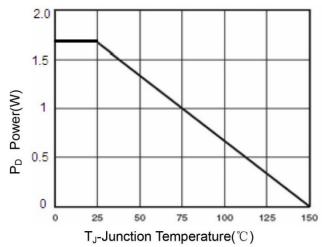
Rating		Symbol	Value	Units
Drain-source Voltage		V _{DS}	-12	V
Gate-source Voltage		V _{GS}	±10	V
Drain Current	T _C =25°C	- I _D	-5.0	A
	T _C =70°C		-3.2	
	T _A =25°C		-3	
	T _A =70°C		-2.3	
Pulsed Drain Current ¹⁾		I _{DM}	-15	Α
Total Power Dissipation		P _D	1.7	W
Thermal Resistance Junction-to-Ambient @ Steady State ²⁾		$R_{\theta JA}$	357	°C/W
Junction and Storage Temperature Range		T _{J,} T _{STG}	-55~+150	℃

Rev.06 1 www.prisemi.com

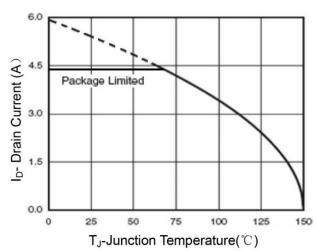
Electrical characteristics per line@25°C (unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D = -250μA	-12	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -12V,V _{GS} = 0V	-	-	-1	μA
Gate-Body Leakage Current	I _{GSS}	V_{GS} = \pm 10V, V_{DS} = 0V	-	-	±100	nA
On Characteristics ³⁾			•			
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	-0.45	-0.7	-1.0	V
		V _{GS} = -4.5V, I _D = -4.5A	-	39	52	mΩ
Static Drain-Source On-Resistance	R _{DS(ON)}	V _{GS} = -2.5V, I _D = -3A	-	58	70	
		V _{GS} = -1.8V, I _D = -2A	-	90	110	
Forward Transconductance	9 _{FS}	$V_{DS} = -5V, I_{D} = -3.5A$	-	8.5	-	S
Dynamic Parameters ⁴⁾	Dynamic Parameters ⁴⁾					
Input Capacitance	C _{iss}		-	740	-	pF
Output Capacitance	C _{oss}	V_{DS} = -4V, V_{GS} = 0V, f= 1MHz	-	290	-	
Reverse Transfer Capacitance	C _{rss}		-	190	-	
Switching Parameters ⁴⁾						
Turn-on Delay Time	t _{d(on)}		-	12	-	
Turn-on Rise Time	t _r	$V_{DD} = -4V, I_D = -3.3A,$	-	35	-	
Turn-Off Delay Time	t _{d(off)}	R_L = -1.2Ω, V_{GEN} = -4.5V, R_g = 1Ω	-	30	-	ns
Turn-Off Fall Time	t _f		-	10	-	
Total Gate Charge	Q_g		-	7.8	-	
Gate-Source Charge	Q_{gs}	V _{DS} = -4V,I _D = -4.1A, V _{GS} = -4.5V	-	1.2	-	nC
Gate-Drain Charge	Q_{gd}	- 65	_	1.6	-	
Drain-Source Diode Characteristics						
Diode Forward Voltage ³⁾	V _{SD}	V _{GS} = 0V,I _S = -1.6A	-	-	-1.2	V
Diode Forward Current ²⁾	Is		-	-	1.6	Α

Notes


Repetitive Rating: Pulse width limited by maximum junction temperature.

Surface Mounted on FR4 Board, t ≤ 10 sec.


Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.

Guaranteed by design, not subject to production

Typical Characteristics

Figure 1 Power Dissipation

Figure 2 Drain Current

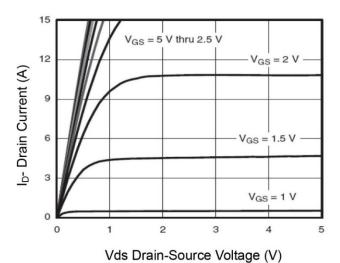


Figure 3 Output Characteristics

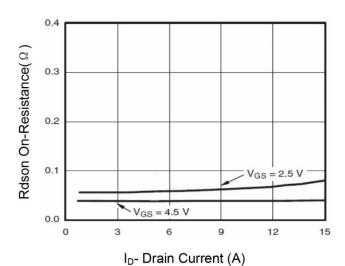



Figure 4 Drain-Source On-Resistance

Figure 5 Transfer Characteristics

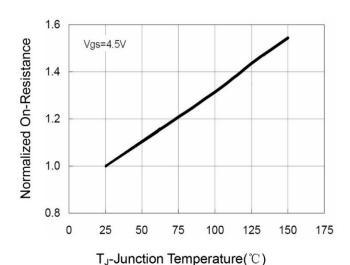
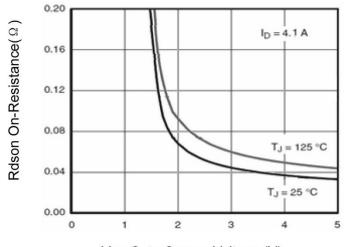
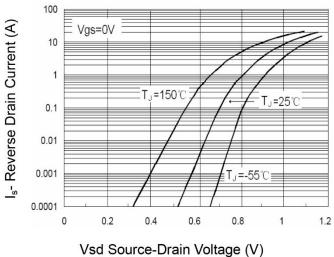
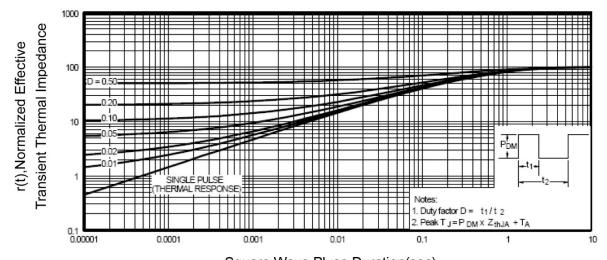



Figure 6 Drain-Source On-Resistance


Vgs Gate-Source Voltage (V)

Vds Drain-Source Voltage (V)

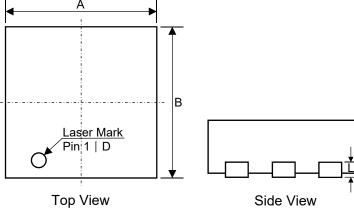
Figure 8 Capacitance vs Vds

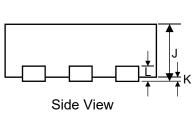


Vds Drain-Source Voltage (V)

PW≤10µs

Figure 9 Source-Drain Diode Forward


Figure 10 Safe Operation Area



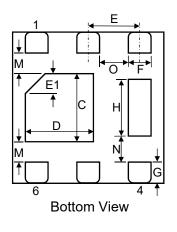
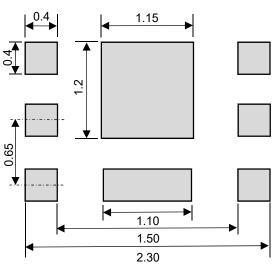

Square Wave Pluse Duration(sec)

Figure 11 Normalized Maximum Transient Thermal Impedance


Product dimension (DFN2X2-6L)

Dim	Millimeters		
Dim	Min	Max	
А	1.90	2.10	
В	1.90	2.10	
С	0.95	1.05	
D	0.80	1.00	
E	0.55	0.75	
E1	0.25Ref.		
F	0.25	0.35	
G	0.25	0.35	
Н	0.50	1.00	
J	0.60	0.80	
К	0.00	0.05	
F	0.300	0.500	
L	0.20Ref.		
М	0.15	_	
N	0.20	-	
0	0.25	-	

Unit:mm

Suggested PCB Layout

Ordering information

Device	Package	Reel	Shipping
PPM6N12V5	DFN2X2-6L (Pb-Free)	7"	3000 / Tape & Reel

IMPORTANT NOTICE

and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.