

# PDPM8P30V5 Dual P-Channel MOSFET

### Description

The PDPM8P30V5 uses advanced trench technology to provide excellent RDS(ON), low gate charge and operation with gate voltages as low as 4.5V. This device is suitable for use as a load switch or in PWM applications.

| MOSFET Product Summary                       |                            |       |  |
|----------------------------------------------|----------------------------|-------|--|
| V <sub>DS</sub> (V) R <sub>DS(on)</sub> (mΩ) |                            | I⊳(A) |  |
| -30                                          | 49 @ V <sub>GS</sub> =-10V | -5.3  |  |

#### **Features**

- > High Power and current handing capability
- Lead free product is acquired
- Surface Mount Package

#### Application

- PWM applications
- Load switch
- Power management



Schematic diagram



#### Marking and pin Assignment



SOP-8 top view

## Absolute maximum rating@25°C

| Rating                                           | Symbol          | Value       | Units |
|--------------------------------------------------|-----------------|-------------|-------|
| Drain-Source Voltage                             | V <sub>DS</sub> | -30         | V     |
| Gate-Source Voltage                              | V <sub>GS</sub> | ±20         | V     |
| Drain Current- Continuous                        | lь              | -5.3        | А     |
| Drain Current- Pulsed <sup>1)</sup>              | Ідм             | -20         | А     |
| Maximum Power Dissipation                        | PD              | 2.6         | W     |
| Operating and Storage Junction Temperature Range | TJ,TSTG         | -55 to +150 | °C    |

## Thermal Characteristics

| Parameter                                             | Symbol           | Max. | Units |
|-------------------------------------------------------|------------------|------|-------|
| Thermal Resistance, Junction to Ambient <sup>2)</sup> | R <sub>0JA</sub> | 49   | °C/W  |

# PDPM8P30V5

# Electrical characteristics per line@25℃( unless otherwise specified)

| Parameter                           | Symbol             | Conditions                                                                         | Min. | Тур. | Max. | Units |
|-------------------------------------|--------------------|------------------------------------------------------------------------------------|------|------|------|-------|
| Drain-Source Breakdown Voltage      | BV <sub>DSS</sub>  | V <sub>GS</sub> =0V,I <sub>D</sub> =-250µA                                         | -30  | -    | -    | V     |
| Zero Gate Voltage Drain Current     | IDSS               | V <sub>DS</sub> =-24V, V <sub>GS</sub> =0V                                         | -    | -    | -1   | μA    |
| Gate-to-Source Forward Leakage      | Igss               | $V_{GS}$ =±20V, $V_{DS}$ =0V                                                       | -    | -    | ±100 | nA    |
| Gate Threshold Voltage              | $V_{GS(th)}$       | $V_{DS} = V_{GS}, I_D = -250 \mu A$                                                | -1   | -1.6 | -3   | V     |
| Ctatia Duain Sauras On Desistance   |                    | V <sub>GS</sub> =-10V, I <sub>D</sub> =-5.3A                                       | -    | 43   | 49   | mΩ    |
| Static Drain-Source On-Resistance   | RDS(ON)            | V <sub>GS</sub> =-4.5V, I <sub>D</sub> =-4.2A,                                     | -    | 68   | 100  | mΩ    |
| Forward Trans conductance           | <b>g</b> Fs        | V <sub>DS</sub> =-15V, I <sub>D</sub> =-4.5A                                       | 4    | 7    | -    | S     |
| Input Capacitance                   | Ciss               |                                                                                    | -    | 540  | -    | pF    |
| Output Capacitance                  | Coss               | $V_{GS}=0V, V_{DS}=-15V,$                                                          | -    | 150  | -    | pF    |
| Reverse Transfer Capacitance        | Crss               | 1— TWI 12                                                                          | -    | 75   | -    | pF    |
| Total Gate Charge                   | Qg                 | Qg                                                                                 |      | 12   | -    | nC    |
| Gate-to-Source Charge               | Qgs                | $I_D = -5.3A, V_{DS} = -15V,$                                                      | -    | 2.4  | -    | nC    |
| Gate-to-Drain(Miller) Charge        | Q <sub>gd</sub>    | VG5 10 V                                                                           | -    | 3.2  | -    | nC    |
| Turn-On Delay Time                  | t <sub>d(on)</sub> |                                                                                    | -    | 8    | -    | ns    |
| Rise Time                           | tr                 | $V_{DD}$ =-15V, I <sub>D</sub> =-1A, V <sub>GS</sub> =-10V , R <sub>GEN</sub> =6Ω, | -    | 14   | -    | ns    |
| Turn-Off Delay Time                 | $t_{d(off)}$       |                                                                                    | -    | 18   | -    | ns    |
| Fall Time                           | t <sub>f</sub>     |                                                                                    | -    | 10   | -    | ns    |
| Diode Forward Voltage <sup>3)</sup> | Vsd                | V <sub>GS</sub> =0V,I <sub>S</sub> =-5.3A                                          | -    | -    | -1.2 | V     |

#### Notes:

1. Repetitive Rating: Pulse width limited by maximum junction temperature.

**2.** Surface Mounted on FR4 Board, t  $\leq$  10 sec.

**3.** Pulse Test: Pulse Width  $\leq$  300µs, Duty Cycle  $\leq$  2%.

## **Typical Characteristics**



Figure 1:Switching Test Circuit



### Figure 2:Switching Waveforms

#### PDPM8P30V5





**Figure 4 Drain Current** 



Figure 6 Drain-Source On-Resistance



Figure 8 Drain-Source On-Resistance

#### PDPM8P30V5





Vds Drain-Source Voltage (V) Figure 10 Capacitance vs Vds



Vsd Source-Drain Voltage (V) Figure 12 Source- Drain Diode Forward

#### PDPM8P30V5

## **Dual P-Channel MOSFET**



Square Wave Pluse Duration(sec) Figure 14 Normalized Maximum Transient Thermal Impedance

## **Product dimension (SOP-8)**





| А  | 1.350      | 1.750 | 0.053 | 0.069 |
|----|------------|-------|-------|-------|
| A1 | 0.100      | 0.250 | 0.004 | 0.010 |
| A2 | 1.350      | 1.550 | 0.053 | 0.061 |
| b  | 0.330      | 0.510 | 0.013 | 0.020 |
| С  | 0.170      | 0.250 | 0.006 | 0.010 |
| D  | 4.700      | 5.100 | 0.185 | 0.200 |
| Е  | 3.800      | 4.000 | 0.150 | 0.157 |
| E1 | 5.800      | 6.200 | 0.228 | 0.244 |
| е  | 1.270(BSC) |       | 0.050 | (BSC) |
| L  | 0.400      | 1.270 | 0.016 | 0.050 |
| θ  | 0°         | 8°    | 0°    | 8°    |

MAX

Inches

MAX

MIN

**Millimeters** 

MIN

Dim

Unit:mm

## **Ordering information**

| Device     | Package | Reel | Shipping           |
|------------|---------|------|--------------------|
| PDPM8P30V5 | SOP-8   | 13"  | 4000 / Tape & Reel |

## Load with information



Unit:mm

## PDPM8P30V5

#### **IMPORTANT NOTICE**

(P) and Prisemi<sup>®</sup> are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com For additional information, please contact your local Sales Representative. ©Copyright 2009, Prisemi Electronics **Prisemi**<sup>®</sup> is a registered trademark of Prisemi Electronics. All rights are reserved.