

## **N-Channel MOSFET**

## **Description**

The PNMIP500V2 is a high voltage power MOSFET and is designed to have better characteristics, such as fast switching time, low gate charge, low on-state resistance and have a high rugged avalanche characteristics. This power MOSFET is usually used at high speed switching applications in switching power supplies and adaptors.

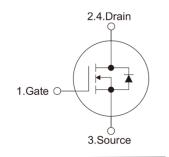
| MOSFET Product Summary |                             |                    |  |  |
|------------------------|-----------------------------|--------------------|--|--|
| V <sub>DS</sub> (V)    | $R_{DS(on)}(\Omega)$        | I <sub>D</sub> (A) |  |  |
| 500                    | 5.0 @ V <sub>GS</sub> = 10V | 2.0                |  |  |



TO-251 (Top View)

## **Feature**

- > Fast switching capability
- > Avalanche energy tested
- ➤ Improved dv/dt capability, high ruggedness


## **Mechanical data**

> Case: TO-251

> Approx. Weight: 0.315g (0.011oz)

➤ Lead free finish, RoHS compliant

Case Material: "Green" molding compound, UL flammability classification 94V-0, "Halogen-free".



Schematic diagram

# Absolute maximum rating@25°C

| Rating                                                                    | Symbol           | Value      | Units |
|---------------------------------------------------------------------------|------------------|------------|-------|
| Drain-Source Voltage                                                      | V <sub>DS</sub>  | 500        | V     |
| Gate-Source Voltage                                                       | $V_{GS}$         | ±30        | V     |
| Drain Current-Continuous $ \frac{T_{C}=25^{\circ}C}{T_{C}=100^{\circ}C} $ | · I <sub>D</sub> | 2.0<br>1.3 | А     |
| Pulsed Drain Current <sup>2)</sup>                                        | I <sub>DM</sub>  | 8.0        | А     |
| Avalanche Energy, Single Pulsed <sup>3)</sup>                             | E <sub>AS</sub>  | 35         | mJ    |
| Peak Diode Recovery dv/dt <sup>4)</sup>                                   | dv/dt            | 2.1        | V/ns  |
| Maximum Power Dissipation                                                 | $P_{D}$          | 54         | W     |
| Operating Junction and Storage Temperature Range                          | $T_J, T_STG$     | -55 ~ +150 | °C    |
| Junction-to-Ambient                                                       | $R_{	heta JA}$   | 63         | °C/W  |
| Junction to Case                                                          | $R_{	heta JC}$   | 2.31       | °C/W  |

# Electrical characteristics per line@25°C (unless otherwise specified)

| Parameter                           | Symbol                             | Conditions                                                          | Min. | Тур. | Max. | Units |  |
|-------------------------------------|------------------------------------|---------------------------------------------------------------------|------|------|------|-------|--|
| Off Characteristics                 |                                    |                                                                     |      |      |      |       |  |
| Drain-Source Breakdown Voltage      | BV <sub>DSS</sub>                  | $V_{GS} = 0V, I_{D} = 250 \mu A$                                    | 500  | -    | -    | V     |  |
| Zero Gate Voltage Drain Current     | I <sub>DSS</sub>                   | V <sub>DS</sub> = 500V,V <sub>GS</sub> = 0V                         | -    | -    | 1.0  | μΑ    |  |
| Gate-Body Leakage Current           | I <sub>GSS</sub>                   | $V_{GS} = \pm 30 \text{V}, V_{DS} = 0 \text{V}$                     | -    | -    | ±100 | nA    |  |
| On Characteristics                  |                                    |                                                                     |      |      |      |       |  |
| Gate Threshold Voltage              | V <sub>GS(th)</sub>                | $V_{DS} = V_{GS}, I_{D} = 250 \mu A$                                | 2.0  | -    | 4.0  | V     |  |
| Drain-Source On-State Resistance    | R <sub>DS(ON)</sub>                | V <sub>GS</sub> = 10V,I <sub>D</sub> = 1.0A                         | -    | 5.0  | 7.0  | Ω     |  |
| Dynamic Characteristics             |                                    |                                                                     |      |      |      |       |  |
| Input Capacitance                   | C <sub>lss</sub>                   |                                                                     | -    | 156  | -    |       |  |
| Output Capacitance                  | C <sub>oss</sub>                   | $V_{DS} = 25V, V_{GS} = 0V,$<br>f = 1.0MHz                          | -    | 24   | -    | pF    |  |
| Reverse Transfer Capacitance        | C <sub>rss</sub>                   |                                                                     | -    | 2.2  | -    |       |  |
| Switching Characteristics           |                                    |                                                                     |      |      |      |       |  |
| Turn-on Delay Time <sup>5)</sup>    | t <sub>d(on)</sub>                 |                                                                     | -    | 8.4  | -    | ns    |  |
| Turn-on Rise Time                   | t <sub>r</sub>                     | V <sub>DS</sub> = 250V, V <sub>GS</sub> = 10V,                      | -    | 22.4 | -    |       |  |
| Turn-Off Delay Time                 | $t_{d(off)}$                       | $I_D = 2.0A, R_G = 25\Omega^{5,6}$                                  | -    | 15.1 | -    |       |  |
| Turn-Off Fall Time                  | t <sub>f</sub>                     |                                                                     | -    | 24.1 | -    |       |  |
| Total Gate Charge <sup>5)</sup>     | $Q_g$                              |                                                                     | -    | 8.97 | -    |       |  |
| Gate-Source Charge                  | $Q_{gs}$                           | $V_{DS} = 400V, V_{GS} = 10V,$<br>$I_{D} = 2.0A, I_{G} = 1mA^{5,6}$ | -    | 2.51 | -    | nC    |  |
| Gate-Drain Charge                   | $Q_{\mathrm{gd}}$                  |                                                                     | -    | 4.02 | -    |       |  |
| Drain-Source Diode Characteristic   | Drain-Source Diode Characteristics |                                                                     |      |      |      |       |  |
| Diode Forward Voltage <sup>5)</sup> | V <sub>SD</sub>                    | $V_{GS} = 0V, I_{S} = 2.0A$                                         | -    | -    | 1.4  | V     |  |
| Diode Continuous Current            | I <sub>S</sub>                     |                                                                     | -    | -    | 2.0  | Α     |  |
| Diode Pulsed Current                | I <sub>SM</sub>                    |                                                                     | -    | -    | 8.0  | Α     |  |
| Reverse Recovery Time <sup>5)</sup> | t <sub>rr</sub>                    | $V_{GS} = 0V, I_{S} = 2.0A,$                                        | -    | 309  | -    | nS    |  |
| Reverse Recovery Charge             | $Q_{rr}$                           | di/dt = 100A/μs                                                     | -    | 0.95 | -    | μC    |  |

<sup>1.</sup>Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

<sup>2.</sup> Repetitive Rating: Pulse width limited by maximum junction temperature. 3. L = 30mH,  $I_{AS}$  = 2.6A,  $V_{DD}$  = 50V,  $R_{G}$  = 25 $\Omega$ , Starting  $T_{J}$  = 25°C 4.  $I_{SD}$  ≤ 2A, di/dt ≤ 200A/ $\mu$ s,  $V_{DD}$  ≤ BV $_{DSS}$ , Starting  $T_{J}$  = 25°C 5. Pulse Test: Pulse width ≤ 300 $\mu$ s, Duty cycle ≤ 2%.

<sup>6.</sup> Essentially independent of operating temperature.

# **Typical Characteristics**

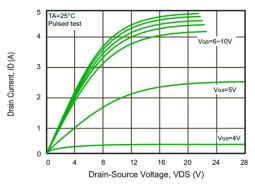



Fig.1 Drain Current vs. Gate-Source Voltage

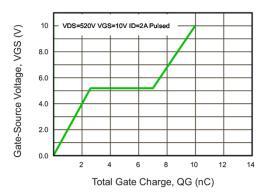



Fig.3 Gate Charge Characteristics

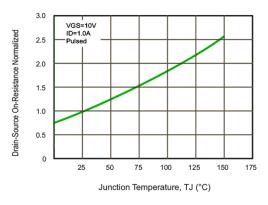



Fig.5 Drain-Source On-Resistance vs. Junction Temperature

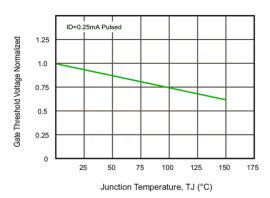



Fig.7 Gate Threshold Voltage vs. Junction Temperature

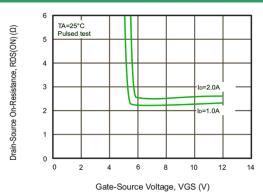



Fig.2 Drain-Source On-Resistance vs. Gate-Source Voltage

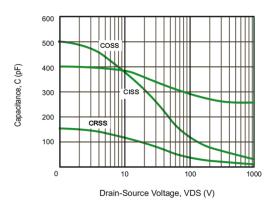



Fig.4 Capacitance Characteristics

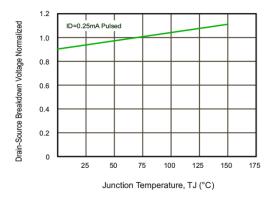



Fig.6 Breakdown Voltage vs. Junction Temperature

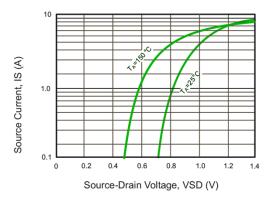



Fig.8 Source Current vs. Source-Drain Voltage

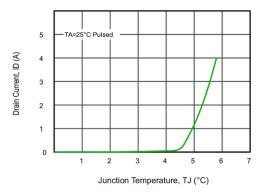



Fig.9 Drain Current vs. Gate-Source Voltage

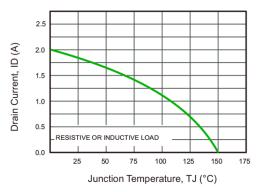



Fig.11 Drain Current vs. Junction Temperature

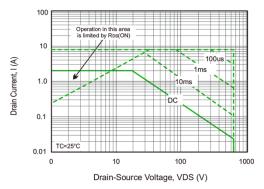



Fig.13 Safe Operating Area

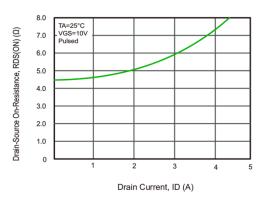



Fig.10 Drain-Source On-Resistance vs. Drain Current

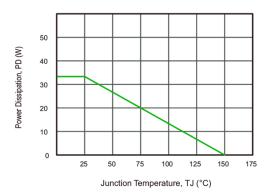
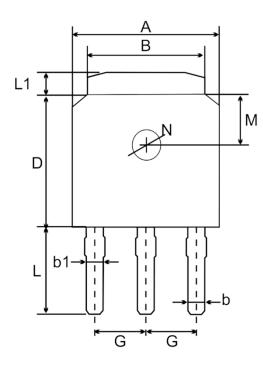
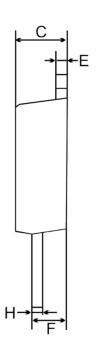
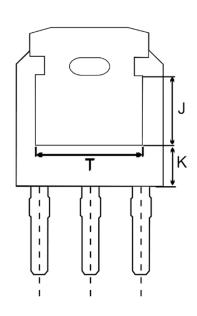






Fig.12 Power Dissipation vs. Junction Temperature

# Product dimension (TO-251)







| Dim | Millimeters |      | Inches     |       |  |
|-----|-------------|------|------------|-------|--|
| Dim | Min         | Max  | Min        | Max   |  |
| А   | 6.30        | 6.70 | 0.248      | 0.264 |  |
| В   | 5.10        | 5.50 | 0.201      | 0.217 |  |
| b   | 0.30        | 0.80 | 0.012      | 0.031 |  |
| b1  | 0.76        | 0.90 | 0.030      | 0.035 |  |
| С   | 2.10        | 2.50 | 0.083      | 0.098 |  |
| D   | 5.90        | 6.30 | 0.232      | 0.248 |  |
| Е   | 0.40        | 0.60 | 0.016      | 0.024 |  |
| F   | 1.30        | 1.80 | 0.051      | 0.071 |  |
| G   | 2.29 Typ.   |      | 0.090 Typ. |       |  |
| Н   | 0.45        | 0.55 | 0.018      | 0.022 |  |
| L   | 3.90        | 4.30 | 0.154      | 0.169 |  |
| L1  | 0.80        | 1.20 | 0.031      | 0.047 |  |
| М   | 1.80 Typ.   |      | 0.071 Typ. |       |  |
| N   | 1.30 Typ.   |      | 0.051 Typ. |       |  |
| J   | 3.16 Ref.   |      | 0.124 Ref. |       |  |
| К   | 1.80 Ref.   |      | 0.071 Ref. |       |  |
| Т   | 4.83 Ref.   |      | 0.190 Ref. |       |  |

#### IMPORTANT NOTICE

and Prisemi are registered trademarks of Prisemi Electronics Co., Ltd (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com
For additional information, please contact your local Sales Representative.

©Copyright 2009, Prisemi Electronics

Prisemi is a registered trademark of Prisemi Electronics.

All rights are reserved.